← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于变分自编码器的光伏功率预测无监督域自适应框架

Unsupervised domain adaptation framework for photovoltaic power forecasting using variational auto-encoders

作者 Atit Bashya · Chidambar Prabhakar Bangr · Tina Boroukhia · Hendro Wicakson
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Transfer Learning framework based on unsupervised domain adaptation.
语言:

中文摘要

摘要 全球向可再生能源的转型迫切需要对这类能源进行准确预测,以实现高效的电网管理。尽管深度学习模型为间歇性可再生能源的预测提供了有效的解决方案,但由于其本身对数据的高度依赖,仍面临诸多挑战。迁移学习方法因此成为应对这些挑战的重要工具。然而,目前在可再生能源预测中使用的迁移学习框架通常需要大量带标签的训练数据来进行微调和知识迁移,这限制了其在数据匮乏场景下的适用性。本文提出了一种域自适应框架,能够将从拥有丰富数据的源域训练得到的预测模型中的知识,无缝迁移到目标域中无需带标签数据的模型训练过程。所提出的域自适应框架利用变分推断技术,通过生成式变分自编码器架构,实现源域与目标域之间特征空间的对齐。在不同配置的太阳能电站上的实验验证表明,该方法具有良好的可复制性和适应性。本研究强调了域自适应在推进光伏功率预测方面的持久潜力,同时为克服基于迁移学习的可再生能源预测中的关键挑战提供了有价值的见解。

English Abstract

Abstract The global transition towards renewable energy sources necessitates accurate forecasts of such energy sources for efficient grid management. While deep learning models offer effective solutions for intermittent renewable energy forecasts, they face challenges due to their inherent data intensity. Transfer learning methods have emerged as valuable tools to address such challenges. However, existing transfer learning frameworks used in renewable energy forecasting, require a significant amount of labelled training data for fine-tuning and knowledge transfer, limiting their applicability to scenarios where abundant data are available. This paper introduces a domain adaptation framework that enables seamless knowledge transfer from forecasting models trained with abundant data to models that need to be trained without labelled data. The proposed domain adaptation framework, leverages variational inference techniques to align feature spaces between source and target domains, utilizing a generative variational auto-encoder architecture. Experimental validation across solar parks with varying configurations demonstrates the replicability and adaptability of the proposed method. This research underscores the enduring potential of domain adaptation in advancing photovoltaic power forecasting while providing valuable insights into overcoming challenges in transfer learning-based renewable energy forecasting.
S

SunView 深度解读

该无监督域自适应光伏功率预测技术对阳光电源iSolarCloud智慧运维平台及储能系统具有重要应用价值。通过变分自编码器实现跨场站知识迁移,可在缺乏标注数据的新建光伏电站快速部署高精度预测模型,显著降低SG系列逆变器接入的分布式电站调试成本。该技术可与PowerTitan储能系统的能量管理策略深度融合,基于迁移学习优化充放电调度,提升多场景适应能力。建议将域自适应算法集成至iSolarCloud平台,结合ST系列PCS实时数据,构建轻量化预测引擎,为新能源并网和虚拟电厂运营提供智能决策支持。