← 返回
光伏发电技术 深度学习 ★ 5.0

基于I-V曲线成像与双流深度神经网络的光伏系统遮挡类型及严重程度诊断

Shading type and severity diagnosis in photovoltaic systems via I-V curve imaging and two-stream deep neural network

语言:

中文摘要

摘要 遮挡是光伏(PV)系统中最常见的异常现象之一,会导致功率损失和热点效应。目前大多数研究仅能实现遮挡检测,而无法进一步诊断遮挡的类型和严重程度。本文提出了一种结合I-V曲线成像与双流深度神经网络(DNN)的有效方法,用于诊断遮挡类型,并估计实际运行光伏系统中五种常见遮挡类型的严重程度。该方法首先对光伏组串的I-V曲线进行重采样,并转换至标准测试条件(STC),以消除数据尺度和环境因素对遮挡诊断结果的影响。随后,采用一种称为格拉米安角和场(Gramian angular summation field, GASF)的时间序列成像方法,增强遮挡特征的可辨识性。此外,构建了一种融合长短期记忆网络(LSTM)与改进的二维卷积神经网络(2D-CNN)的双流DNN结构,以整合I-V曲线时序数据与二维图像的特征信息。进一步地,结合光伏机理模型及I-V曲线特性,本研究在考虑老化损耗影响的基础上,实现了对运行中光伏系统不同类型遮挡严重程度的量化估计。所提方法的有效性与泛化能力通过仿真模型和实际光伏平台获取的模拟数据与实验数据得到了验证。

English Abstract

Abstract Shading is one of the most common anomalies in photovoltaic (PV) systems, leading to power loss and hotspot phenomenon. Currently, most works can only realize shading detection but cannot further diagnose the type and severity of shading. This paper proposes an effective method for diagnosing shading types combining I-V curve imaging with two-stream deep neural networks (DNN), and estimating severity of five common types of shading in actual operating PV systems . In this method, the I-V curves of PV strings are first resampled and converted to standard test conditions (STC) for eliminating the effects of data scale and environmental factors on shading diagnosis results. Then, a time series imaging method called Gramian angular summation field (GASF) is used to enhance the features of shading. Additionally, a two-stream DNN combining long short-term memory (LSTM) and improved two-dimensional convolutional neural network (2D-CNN) is developed to integrate the characteristic information of I-V curves and 2D images. Furthermore, combining the PV mechanism models and characteristics of I-V curves, this work further estimates the severity of different types of shading in operating PV systems considering the effects of aging loss. The effectiveness and generalization of the proposed method are validated via simulated and experimental data obtained from simulation model and an actual PV platform.
S

SunView 深度解读

该阴影诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过I-V曲线成像与双流深度神经网络,可实现阴影类型识别与严重程度量化评估,弥补现有MPPT优化技术仅能检测异常但无法精准诊断的不足。建议将GASF时序成像与LSTM-CNN融合算法集成至智能运维平台,结合组串级I-V曲线监测数据,实现阴影、老化等故障的精准区分与预测性维护,提升1500V高压系统的发电效率与热斑防护能力,强化iSolarCloud的智能诊断核心竞争力。