← 返回
电动汽车驱动 SiC器件 深度学习 ★ 5.0

基于物理信息图学习的大规模机组组合问题求解

Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning

作者 Jingtao Qin · Nanpeng Yu
期刊 IEEE Transactions on Power Systems
出版日期 2025年4月
技术分类 电动汽车驱动
技术标签 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 机组组合问题 图神经网络 MIP求解器 神经潜水 神经分支
语言:

中文摘要

机组组合(UC)问题通常建模为混合整数规划(MIP),并通过分支定界(B&B)算法求解。近年来,图神经网络(GNN)通过学习“下潜”与“分支”策略来增强现代MIP求解器的性能。然而,现有GNN模型多基于数学表达构建,在处理大规模UC问题时计算代价较高。本文提出一种物理信息引导的分层图卷积网络(PI-GCN),用于神经下潜,利用电力系统各组件的物理特征寻找高质量变量赋值;同时采用基于MIP模型的图卷积网络(MB-GCN)进行神经分支。将二者嵌入现代MIP求解器,构建面向大规模UC问题的新型神经求解器。数值实验表明,PI-GCN在下潜任务中优于基线模型,且所提神经求解器在综合调度成本上显著优于传统MIP求解器。

English Abstract

Unit commitment (UC) problems are typically formulated as mixed-integer programs (MIP) and solved by the branch-and-bound (B&B) scheme. The recent advances in graph neural networks (GNN) enable it to enhance the B&B algorithm in modern MIP solvers by learning to dive and branch. Existing GNN models that tackle MIP problems are mostly constructed from mathematical formulation, which is computationally expensive when dealing with large-scale UC problems. In this paper, we propose a physics-informed hierarchical graph convolutional network (PI-GCN) for neural diving that leverages the underlying features of various components of power systems to find highquality variable assignments. Furthermore, we adopt the MIP model-based graph convolutional network (MB-GCN) for neural branching to select the optimal variables for branching at each node of the B&B tree. Finally, we integrate neural diving and neural branching into a modern MIP solver to establish a novel neural MIP solver designed for large-scale UC problems. Numeral studies show that PI-GCN has better performance and scalability than the baseline MB-GCN on neural diving. Moreover, the neural MIP solver yields the lowest operational cost and outperforms a modern MIP solver for all testing days after combining it with our proposed neural diving model and the baseline neural branching model.
S

SunView 深度解读

该物理信息图学习求解大规模机组组合技术对阳光电源储能系统和微网调度具有重要应用价值。在PowerTitan大型储能系统中,可优化多储能单元的充放电调度策略,显著降低综合运行成本;在iSolarCloud云平台的智能运维模块,可实现光储充一体化场景下的实时优化调度,通过PI-GCN快速求解含数百台SG逆变器、ST储能变流器和充电桩的复杂组合优化问题。该深度学习方法突破传统MIP求解器计算瓶颈,为阳光电源构网型储能系统的多时间尺度协调控制、虚拟电厂VPP资源聚合调度提供高效算法支撑,提升大规模新能源并网场景的经济性与实时响应能力。