← 返回
基于流形特征插值的静态测量到动态测量的保证转换
Guaranteed Conversion From Static Measurements Into Dynamic Ones Based on Manifold Feature Interpolation
| 作者 | Lihao Mai · Haoran Li · Yang Weng · Erik Blasch · Xiaodong Zheng |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年2月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 SiC器件 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 电力系统 数据插值 自编码器 物理信息神经网络 |
语言:
中文摘要
可再生能源渗透率上升及电动汽车等负荷波动导致电力系统稳定性问题,亟需动态测量技术。然而,高分辨率量测设备(如PMU)在配电网中数量有限,而低分辨率量测设备广泛存在。本文提出一种多分辨率数据插值方法,结合自编码器与曲率正则化实现最优插值设计,并引入物理信息神经网络(PINN)和随机物理信息神经网络(SPINN)以融合系统物理规律并处理不确定性。所提方法在输电与配电系统中均得到充分验证。
English Abstract
The increasing penetration of renewable energy sources, coupled with the variability of loads such as Electric Vehicles (EVs), is leading to stability issues in power systems. Addressing this problem requires dynamic measurements. However, there may be a limited number of High-Resolution (HR) meters, such as Phasor Measurement Units (PMUs), especially in distribution grids. In contrast, there are extensive Low-Resolution (LR) meters. With multi-resolution sources, our objective is to develop methodologies for interpolating data. Existing interpolation methods arise from different domains, e.g., optimization, signal analysis, Machine Learning, etc. However, they generally face the following challenges. Firstly, they lack a principled design for complex dynamics. Secondly, they often overlook essential physical aspects and inherent constraints of power systems. Finally, these methods typically neglect uncertainties. To overcome these challenges, we combine Autoencoders (AE) with curvature regularization to propose an optimal design of interpolation first. Then, we integrate physical laws into our analysis using physics-informed neural networks (PINN) and address uncertainties with stochastic physics-informed neural networks (SPINN). Our proposed method is extensively verified within both transmission and distribution grids.
S
SunView 深度解读
该多分辨率动态测量技术对阳光电源储能与光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可融合SCADA低分辨率数据与有限PMU高分辨率数据,通过流形插值实现全站动态状态估计,提升ST系列储能变流器的并网稳定性监测能力。对于分布式光伏场站,该方法可将SG逆变器的秒级功率数据插值为毫秒级动态特性,优化构网型GFM控制的暂态响应。PINN物理约束机制可嵌入iSolarCloud平台,结合电网拓扑与潮流方程实现预测性维护。SPINN不确定性量化功能适用于电动汽车充电桩的负荷波动预测,为充电站储能容量配置提供数据支撑,显著降低高精度测量设备投资成本。