← 返回

深度灵活的商业建筑暖通空调系统控制:一种融合物理感知深度学习的模型预测控制方法

Deeply flexible commercial building HVAC system control: A physics-aware deep learning-embedded MPC approach

语言:

中文摘要

摘要 商业建筑中的供暖、通风与空调(HVAC)系统可作为灵活性资源,促进可再生能源在电力系统中的集成。然而,冷水机组复杂的运行特性以及水循环与空气循环耦合下的多区域热动态特性导致HVAC系统控制模型复杂度高,限制了其运行灵活性的充分挖掘。为解决该问题,本文提出一种融合物理感知深度学习的模型预测控制(MPC)方法,以实现面向需求响应的深度灵活商业建筑HVAC系统控制。首先,采用具有高逼近能力的深度学习模型捕捉冷水机组的运行特性,并结合物理约束模块以保证运行约束的满足;多区域热动态则利用基于先验建筑结构信息引导的图卷积网络进行建模。其次,所提出的深度学习模型被等效重构为混合整数线性约束,并无缝嵌入MPC框架中。为提升求解效率,本文进一步开发了边界前向传播算法和网络剪枝技术,用于优化深度学习嵌入式MPC方法的计算性能。最后,在EnergyPlus仿真平台上构建了一个包含水-气耦合回路、室外气象条件、室内人员 occupancy 行为等要素的高保真商业建筑HVAC系统模型。大量实验结果验证了所提方法在提升灵活性利用方面的有效性。

English Abstract

Abstract Heating, ventilation, and air conditioning (HVAC) systems within commercial buildings can serve as flexible resources to promote the integration of renewable energy into power systems . However, the complicated operational characteristic of chiller and multi-zone thermal dynamics in the coupled water and air loops lead to a high model complexity to HVAC system control, limiting its operational flexibility exploitation. To tackle this problem, this paper proposes a physics-aware deep learning-embedded model predictive control (MPC) approach to enable deeply flexible commercial building HVAC system control for demand response. Firstly, the chiller's operational characteristic is captured via a deep learning model with high approximation capability, integrated with a physics-constrained block to enforce operational constraints. The multi-zone thermal dynamics are modeled using a graph convolutional network informed by the prior building structure. Secondly, the proposed deep learning models are equivalently reformulated into mixed integer linear constraints and seamlessly embedded into the MPC framework. To enhance the solution efficiency, the bound forward propagation algorithm and network pruning techniques are both developed for the deep learning-embedded MPC approach. Finally, a high-fidelity commercial building HVAC system consisting of coupled water and air loops, as well as outdoor weather conditions, indoor occupancy behaviors, etc. is built on the EnergyPlus simulation program. Comprehensive experimental results have validated the effectiveness of the proposed method in improving flexibility utilization.
S

SunView 深度解读

该物理感知深度学习MPC技术对阳光电源工商业储能系统具有重要应用价值。论文中HVAC柔性调控思路可迁移至ST系列PCS的需求响应场景:利用深度学习建模复杂负荷特性,结合物理约束保证设备安全运行;图卷积网络建模多区域热动态的方法,可借鉴用于PowerTitan多簇电池热管理协同优化;混合整数线性化嵌入MPC框架的技术路线,能提升iSolarCloud平台实时优化调度效率,增强工商业光储系统参与电网辅助服务的深度灵活性。