← 返回
基于物理信息神经网络的振荡越浪式波浪能转换装置系统辨识
System identification of oscillating surge wave energy converter using physics-informed neural network
| 作者 | Mahmoud Ayy · Lisheng Yang · Alaa Ahm · Ahmed Shalaby · Jianuo Huang · Jia Mi · Raju Datl · Lei Zuo · Muhammad R. Hajj |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 378 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Experimentally validated reduced-order models for WEC response are developed. |
语言:
中文摘要
优化波浪能转换装置的几何结构并通过PTO控制提高其效率,需要发展能够预测其水动力响应的有效低阶模型。本文采用多步方法,识别控制振荡越浪式波浪能转换装置响应方程的系数。依次利用准静态实验、自由响应实验和扭矩强迫实验的数据,分别识别水静力刚度系数、辐射阻尼系数、附加质量系数以及非线性阻尼系数。这些数据集来源于对振荡式波浪能转换装置模型所进行的实验。刚度系数由准静态实验确定。随后,将物理信息神经网络应用于自由响应数据,以识别表征辐射阻尼的状态空间模型的系数。同样的方法被应用于扭矩强迫响应数据,以识别附加质量系数和非线性阻尼系数。文中详细介绍了所实现的物理信息神经网络的具体架构与实施细节。通过与实验测量结果进行对比,对所识别出的系数及代表性响应模型进行了验证。利用所识别的系数推导出了导纳函数的解析表达式,并在离散频率下将其与实验测定的导纳值进行比对,验证了该表达式的准确性。
English Abstract
Abstract Optimizing the geometry and increasing the efficiency through PTO control of wave energy converters require the development of effective reduced-order models that predict their hydrodynamic response. We implement a multi-step approach to identify the coefficients of the equation governing the response of an oscillating surge wave energy converter. Data from quasi-static, free response and torque-forced experiments are successively used to respectively identify the hydrostatic stiffness, radiation damping, added mass, and nonlinear damping coefficients . The data sets were generated from experiments performed on a model of an oscillating wave energy converter. The stiffness coefficient was determined from quasi-static experiments. Physics-informed neural network was then applied to the free response data to identify the coefficients of a state-space model that represents the radiation damping. The same approach was applied to torque-forced response data to identify the added mass and nonlinear damping coefficients. Details of the implemented physics-informed neural network are provided. Validation of the identified coefficients and representative model of the response is performed through comparisons with experimental measurements. An analytical representation of the admittance function is derived using the identified coefficients. This representation is validated against experimentally determined values at discrete frequencies.
S
SunView 深度解读
该物理信息神经网络(PINN)系统辨识方法对阳光电源储能变流器ST系列和电机驱动控制具有重要借鉴价值。文中多步骤辨识非线性阻尼、辐射阻尼及附加质量的思路,可应用于PowerTitan储能系统的PCS控制参数自适应优化和电动汽车驱动系统的电机参数在线辨识。结合SiC器件高频特性,PINN可实现GFM/VSG控制算法的模型降阶与实时参数修正,提升iSolarCloud平台的预测性维护精度,特别适用于复杂工况下的阻抗建模与振荡抑制。