← 返回
基于Adaline神经网络的数据使能有限状态预测控制用于电力变换器
Data-Enabled Finite State Predictive Control for Power Converters via Adaline Neural Network
| 作者 | Wenjie Wu · Lin Qiu · Xing Liu · Jien Ma · Jose Rodriguez · Youtong Fang |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2024年8月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 SiC器件 三电平 模型预测控制MPC 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 有限控制集模型预测控制 数据驱动控制 动态线性化数据模型 自适应线性神经网络 中点电位调节 |
语言:
中文摘要
有限控制集模型预测控制(FCS-MPC)在电力变换器与电机驱动中展现出良好前景,但受限于模型依赖性。本文从动态建模角度提出一种数据使能的有限集预测控制方案。采用动态线性化数据模型在各运行点等效重构系统,并通过自适应线性神经网络在线更新时变参数,提升建模精度与实现性能。同时提出一种改进的无电容电压平衡方法以调节中点电位。由于负载电流与电容电压的无参数预测仅依赖系统输入输出测量及历史数据,有效规避了参数变化带来的不利影响。通过在三电平中点钳位逆变器上的仿真与实验验证了所提方法的优越性。
English Abstract
Finite control-set model predictive control (FCS-MPC) has been found as a promising alternative in the control of power converters and motor drives, albeit with model dependence issues. This inherent defect of the FCS-MPC controller triggered the widespread of model-free or data-driven control schemes in recent decades. This article, at hand, presents a data-enabled finite set predictive control solution subject to model dependence issues from the dynamic modeling point of view. In this regard, a dynamic-linearization data model is utilized to equivalently reformulate the governed power converter at each operation point. In pursuit of the accurate modeling of the plant, the time-varying parameters of the data model are updated online by an adaptive linear neural network, rendering a favorable influence on implementation. Additionally, an improved capacitance-less voltage balancing method is proposed to regulate the neutral point potential. Since the parameterless prediction process for both load currents and capacitor voltage relies solely on measured and historical input–output data of the plant, the destructive effect of parameter variations can be circumvented. To evaluate the correctness of the proposed solution, the comparative simulation and experimentation with the conventional method and state-of-the-art solutions are examined on a classic three-level neutral-point-clamped inverter.
S
SunView 深度解读
该数据驱动的有限集预测控制技术对阳光电源ST系列储能变流器和SG光伏逆变器的三电平拓扑控制具有重要应用价值。通过Adaline神经网络实现无参数化预测控制,可有效解决储能系统在宽工况运行时的参数漂移问题,提升PowerTitan大型储能系统在温度变化、器件老化等复杂工况下的控制鲁棒性。改进的中点电位平衡方法可直接应用于三电平NPC拓扑的SiC模块设计,降低电容电压波动。该数据使能方案与阳光现有MPC控制技术结合,可减少对精确电感电容参数的依赖,简化调试流程,特别适用于车载OBC和充电桩等需要快速响应和高可靠性的应用场景,为智能运维平台提供自适应控制算法支撑。