← 返回
基于拓扑数据分析和图神经网络的供应链金融信用风险评估新型混合模型
A Novel Hybrid Model for Credit Risk Assessment of SCF Based on TDA and GNN
| 作者 | Kosar Farajpour Mojdehi · Babak Amiri · Amirali Haddadi |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 DAB 可靠性分析 机器学习 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 供应链金融 信用风险评估 拓扑数据分析 图神经网络 中小企业 |
语言:
中文摘要
能源领域供应链金融SCF因需要可持续高效金融解决方案管理供应商、金融机构和能源公司等利益相关方间复杂互动而成为关键关注领域。本研究提出新型混合拓扑数据分析TDA和图神经网络GNN优化SCF信用风险评估。通过利用BallMapper拓扑数据分析模型和基于网络的特征,所提模型对信用风险因素提供更深入见解,增强中小企业信用风险评估准确性和可靠性。结果表明所提BallMapper-图神经网络BM-GNN模型达到更高准确率和F1分数,优于传统机器学习方法。值得注意的是,将基于网络的特征与财务比率结合在信用风险评估中产生最有利结果。SHAP模型强调某些特征在预测破产中的关键作用,为风险缓解策略提供宝贵见解。这些结果为支持TDA和GNN在金融应用特别是供应链金融中小企业信用风险评估中的有效性的不断增长证据做出贡献。使用基于网络的模型为提升风险评估准确性和可靠性开辟新途径,最终赋能金融机构和利益相关者做出更明智决策。
English Abstract
Supply Chain Finance (SCF) in the energy sector has emerged as a critical area of focus due to the need for sustainable and efficient financial solutions to manage the complex interactions between various stakeholders, including suppliers, financial institutions, and energy companies. This study proposes a novel hybrid Topological Data Analysis (TDA) and Graph Neural Network (GNN) to optimize credit risk assessment in SCF. By leveraging BallMapper (BM) topological data analysis model and network-based features, the proposed model provides deeper insights into credit risk factors, enhancing the accuracy and dependability of credit risk evaluation for SMEs. Results demonstrate that the proposed BallMapper- Graph Neural Network (BM-GNN) model achieves higher accuracy and F1-scores, outperforming traditional machine learning approaches. Notably, incorporating network-based features alongside financial ratios yields the most favorable results in credit risk assessment. The SHapley Additive exPlanations (SHAP) model highlights the pivotal role of certain features in predicting bankruptcy, offering valuable insights for risk mitigation strategies. These results contribute to the growing body of evidence supporting the efficacy of TDA and GNN in financial applications, particularly in credit risk evaluation for SMEs in supply chain finance. Using network-based models opens up new avenues for improving accuracy and reliability in risk assessment, ultimately empowering financial institutions and stakeholders to make more informed decisions.
S
SunView 深度解读
该信用风险评估技术对阳光电源供应链金融和客户信用管理具有应用价值。阳光在新能源项目融资和设备租赁场景需要精准的信用风险评估。该研究的图神经网络和拓扑分析方法可集成到阳光金融服务平台,分析客户网络关系和财务数据,识别潜在风险。在光伏储能项目开发中,该技术可评估EPC总包商和业主的信用状况,降低项目风险。该SHAP可解释性方法可帮助阳光理解风险因素,制定差异化信用策略。结合阳光全球业务网络,该技术可构建供应链金融风控体系,支持上下游企业融资,优化资金周转,提升供应链整体效率和竞争力。