← 返回
基于机器学习增强的大规模并行暂态仿真方法用于大规模可再生能源电力系统
Machine-Learning-Reinforced Massively Parallel Transient Simulation for Large-Scale Renewable-Energy-Integrated Power Systems
| 作者 | Tianshi Cheng · Ruogu Chen · Ning Lin · Tian Liang · Venkata Dinavahi |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年6月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 微电网 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源系统 电磁暂态仿真 机器学习 大规模仿真 微电网 |
语言:
中文摘要
可再生能源系统(RESs)在向绿色智能电网转型中起关键作用,但其受光照、风速等自然因素影响,具有复杂性与不确定性,给并网带来挑战。电磁暂态(EMT)仿真可有效研究RES并网问题,但现有方法受限于模型非线性和计算复杂度,难以实现大规模精细化仿真。本文提出一种面向数据、结合机器学习的CPU-GPU大规模并行EMT仿真方法,采用人工神经网络构建数据驱动的RES模型,并基于实体-组件-系统架构集成。模型训练依托传统物理EMT模型生成的数据,并通过MATLAB/Simulink验证。将RES元件组建成微网接入改进的IEEE 118节点AC/DC系统,在含200万RES实体下实现较传统CPU非线性迭代400倍的加速性能。
English Abstract
Renewable energy systems (RESs) are pivotal in the transition to eco-friendly smart grids. The complexity and uncertainty of RESs, driven by uncontrollable natural forces like sunlight and wind, bring challenges to integrating RESs into modern power systems. Electromagnetic transient (EMT) simulation is an effective method for studying the integration of RESs. Currently, the EMT simulation of RESs is limited to small-scale and lumped RES models due to the model complexity and nonlinearity, which cannot reflect the detailed characteristics of large-scale RESs in practice. This paper introduces a data-oriented, machine learning-enhanced approach to achieve massively parallel EMT simulation on CPU-GPU, designed to efficiently model and simulate large-scale, detailed RES. It incorporates data-driven machine learning modeling of RES via artificial neural networks and integrates these models using a data-oriented entity-component-system framework. The model training was based on reliable model data produced by traditional physical EMT models and the results were validated with MATLAB/Simulink. The RES components are grouped into a microgrid connected to a synthetic AC/DC system based on the IEEE 118-Bus system, achieving an acceleration performance of 400 times faster than traditional CPU nonlinear iterative computations with 2 million RES entities.
S
SunView 深度解读
该机器学习增强的大规模并行EMT仿真技术对阳光电源具有重要战略价值。在PowerTitan储能系统和大型光伏电站并网设计中,可快速仿真数百万级SiC逆变器的暂态交互特性,400倍加速性能显著缩短产品开发周期。对ST系列储能变流器的构网型GFM控制策略优化尤为关键,能高效评估微电网场景下多台设备的协同稳定性。数据驱动建模方法可集成到iSolarCloud平台,实现大规模新能源场站的数字孪生仿真与预测性维护。该技术突破了传统物理仿真的计算瓶颈,为阳光电源在复杂电网环境下的系统级解决方案提供强大的仿真验证工具,支撑高比例可再生能源并网的技术攻关。