← 返回
储能系统技术 储能系统 SiC器件 机器学习 深度学习 ★ 5.0

探索机器学习和深度学习技术在神经疾病脑电信号分类中的有效性

Exploring the Effectiveness of Machine Learning and Deep Learning Techniques for EEG Signal Classification in Neurological Disorders

作者 Souhaila Khalfallah · William Puech · Mehdi Tlija · Kais Bouallegue
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 机器学习 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 神经疾病 机器学习 深度学习 脑电图信号 疾病分类
语言:

中文摘要

神经疾病是全球身体和认知残疾的主要原因,影响约15%的全球人口。本研究探索机器学习ML和深度学习DL技术在处理脑电图EEG信号以检测癫痫、自闭症谱系障碍ASD和阿尔茨海默病等神经疾病中的应用。呈现详细工作流程,从使用头戴设备采集EEG数据开始,然后使用有限脉冲响应FIR滤波器和独立成分分析ICA进行数据预处理以消除噪声和伪影。数据分段后提取带功率和Shannon熵等关键特征以提高分类准确性。这些特征存储在离线数据库中便于分析期间访问,然后应用于ML和DL模型,系统测试性能并与先前研究比较结果。研究结果显示令人印象深刻的准确性,随机森林模型在自闭症与健康受试者分类中实现99.85%准确率,使用SVM区分健康个体与痴呆症实现100%准确率。CNN和ChronoNet等深度学习模型准确率在92.5%到100%之间。

English Abstract

Neurological disorders are among the leading causes of both physical and cognitive disabilities worldwide, affecting approximately 15% of the global population. This study explores the use of machine learning (ML) and deep learning (DL) techniques in processing Electroencephalography (EEG) signals to detect various neurological disorders, including Epilepsy, Autism Spectrum Disorder (ASD), and Alzheimer’s disease. We present a detailed workflow that begins with EEG data acquisition using a headset, followed by data preprocessing with Finite Impulse Response (FIR) filters and Independent Component Analysis (ICA) to eliminate noise and artifacts. Furthermore, the data is segmented, allowing the extraction of key features such as Bandpower and Shannon entropy, which improve classification accuracy. These features are stored in an offline database for easy access during analysis, to be then applied for both ML and DL models, systematically testing their performance and comparing the results to prior studies. Hence, our findings show impressive accuracy, with the random forest model achieving 99.85% accuracy in classifying autism vs. healthy subjects and 100% accuracy in distinguishing healthy individuals from those with dementia using Support Vector Machines (SVM). Moreover, deep learning models, including Convolutional Neural Networks (CNN) and ChronoNet, demonstrated accuracy rates ranging from 92.5% to 100%. In conclusion, this research highlights the effectiveness of ML and DL techniques in EEG signal processing, offering valuable contributions to the field of brain-computer interfaces and advancing the potential for more accurate neurological disease classification and diagnosis.
S

SunView 深度解读

该EEG信号分类技术对阳光电源智能诊断系统有跨领域借鉴意义。虽然阳光主要聚焦能源设备,但信号处理和特征提取方法可应用于阳光设备状态监测和故障诊断。FIR滤波和ICA噪声消除技术对阳光电力电子设备信号处理有参考价值。机器学习和深度学习模型对比分析思路可应用于阳光故障分类算法开发。该研究验证的高准确率,证明特征工程和模型选择的重要性,可指导阳光优化设备健康状态评估和预测性维护算法。