← 返回
储能系统技术 储能系统 SiC器件 机器学习 深度学习 ★ 5.0

通过深度学习和混合安全模型缓解智能信息物理电力系统的网络风险

Mitigating Cyber Risks in Smart Cyber-Physical Power Systems Through Deep Learning

作者 M. A. S. P. Dayarathne · M. S. M. Jayathilaka · R. M. V. A. Bandara · V. Logeeshan · S. Kumarawadu · Chathura Wanigasekara
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 机器学习 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源集成 智能电网 网络安全 机器学习 网络攻击检测
语言:

中文摘要

智能电网中可再生能源集成的兴起带来新网络安全挑战,促使本研究检验智能信息物理电力系统CPPS的脆弱性。风能和太阳能等可再生能源集成到智能电网因其分散和可变特性带来运行风险,特别是在实时监控和控制所需的通信层内。虽然可再生能源集成增加不直接影响网络安全脆弱性,但主要挑战源于其分散性。解决这种分散需要在供需之间使用网络层,为电力系统控制和通信系统引入网络威胁脆弱性。这些层易受虚假数据注入FDI、拒绝服务DoS和重放攻击等多样化网络攻击,可能危及电网稳定性和安全性。为应对这些风险,研究提出混合方法,集成传统网络安全策略和机器学习ML方法以提升网络攻击检测。研究强调使用深度学习模型包括卷积神经网络CNN和长短期记忆LSTM网络进行电网数据实时异常识别。这些模型使用PSCAD仿真数据集增强合成网络攻击开发,在威胁识别和缓解方面展示显著进步。通过结合利用特征导数的新颖预处理方法,所提模型在检测网络威胁方面达到98%以上准确率。

English Abstract

The rise of renewable energy integration in smart grids brings new cybersecurity challenges, prompting this study to examine vulnerabilities in Smart Cyber-Physical Power Systems (CPPS). The integration of renewable energy sources, such as wind and solar, into smart grids poses operational risks due to their decentralized and variable characteristics, particularly within the communication layers essential for real-time monitoring and control. While increasing integration of renewable energy sources does not directly impact cybersecurity vulnerabilities, the primary challenge arises from their decentralization. Addressing this decentralization requires the use of cyber layers between supply and demand, introducing vulnerabilities of cyber threats to the control and communication systems of the power system. These layers, vulnerable to diverse cyber-attacks like false data injection (FDI), denial of service (DoS), and replay assaults, might compromise grid stability and security. To address these risks, the research proposes a hybrid approach that integrates conventional cybersecurity strategies with machine learning (ML) approaches to improve cyber-attack detection. The research highlights the use of deep learning models, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, for real-time anomaly identification in grid data. These models, developed using a PSCAD-simulated dataset augmented with synthetic cyber-attacks, exhibit considerable advancements in threat identification and mitigation. The study emphasizes the difficulties in identifying cyber risks in grids with significant renewable integration, such as frequency instability and diminished system inertia, and suggests energy storage alternatives and sophisticated forecasting models to mitigate these issues. By incorporating a novel pre-processing method that leverages feature derivatives, the proposed models achieve over 98% accuracy in detecting cyber threats, providing a robust framework for protecting smart power grids from evolving cyber risks.
S

SunView 深度解读

该网络安全技术对阳光电源智慧能源平台安全防护至关重要。阳光iSolarCloud云平台连接海量光伏储能设备,面临虚假数据注入和拒绝服务等网络攻击威胁。该研究的深度学习异常检测方法可集成到阳光云平台安全体系,实现实时威胁识别和防御。在电网侧储能场景下,网络攻击可能导致储能系统误动作,影响电网稳定。该CNN-LSTM混合模型可部署在阳光ST储能变流器的边缘安全模块,检测通信数据异常,阻止恶意指令执行。结合阳光设备级安全芯片和云端安全中心,该技术可构建纵深防御体系,保护能源物联网免受网络攻击,确保电网级储能系统安全可靠运行,维护电力系统稳定性。