← 返回
基于人工智能数据驱动的冷喷涂涂层制造优化
AI Data-Driven Optimization of Cold Spray Coating Manufacturing
| 作者 | Alessia Auriemma Citarella · Luigi Carrino · Fabiola De Marco · Luigi Di Biasi · Alessia Serena Perna · Antonio Viscusi |
| 期刊 | IEEE Transactions on Industrial Informatics |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 有限元仿真 机器学习 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 冷喷涂增材制造 机器学习 涂层特性预测 有限元模型 高斯过程回归 |
语言:
中文摘要
冷喷涂增材制造(CSAM)是一种在多种表面(尤其是聚合物和复合材料等热敏感材料)上施加金属涂层的有效技术。然而,工艺效果受多种复杂因素影响,涂层性能优化仍具挑战。本研究结合有限元模型(FEM)与有监督机器学习(ML)方法,构建包含132组FEM模拟的数据集,涵盖多种金属-聚合物组合及冲击速度范围,预测颗粒嵌入深度与展平程度。比较支持向量回归、决策树、高斯过程回归(GPR)和神经网络(NN)等算法,以均方根误差(RMSE)评估性能。结果表明,GPR对展平预测最优(RMSE=3.9),双层NN对嵌入深度预测最准(RMSE=2.3)。不同输出因物理机制差异需采用不同模型:嵌入深度与冲击速度和材料密度呈较线性关系,而展平行为受局部变形与界面动力学影响更复杂。研究表明,ML可高效泛化FEM结果,显著降低计算成本,实现多工况下涂层行为的快速预测。
English Abstract
Cold spray additive manufacturing (CSAM) is an effective technique for applying metallic layers to various surfaces, particularly beneficial for thermosensitive materials, such as polymers and composites. However, optimizing coating outcomes remains challenging due to several complex factors influencing process efficacy. Machine learning (ML) offers a powerful solution to enhance the quality of CSAM by predicting key coating properties, such as particle penetration depth and flattening. This study addresses the problem of accurately predicting key coating characteristics, specifically particle penetration depth and flattening, by integrating finite element model (FEM) with supervised ML techniques. A dataset of 132 FEM simulations was generated, covering multiple metal–polymer combinations and a wide range of impact velocities. The study evaluates and compares several ML algorithms, including support vector regression, decision trees, Gaussian process regression (GPR), and neural networks (NNs), with the goal of minimizing prediction error measured via root-mean-square error (RMSE). Results show that GPR achieves the best performance for particle flattening (RMSE = 3.9), while a bilayered NN provides the most accurate prediction of penetration depth (RMSE = 2.3). The findings highlight the need for distinct models due to the differing physical mechanisms governing each output: penetration depth exhibits a more linear and predictable relationship with impact velocity and material density, whereas flattening is influenced by complex local deformation and interfacial dynamics. This study demonstrates the feasibility and efficiency of using ML to generalize FEM results, reducing computational cost and enabling fast prediction of coating behavior across varying process conditions.
S
SunView 深度解读
该AI驱动的冷喷涂优化技术对阳光电源功率器件封装与散热系统具有重要应用价值。在ST储能变流器和SG逆变器的SiC/GaN功率模块制造中,冷喷涂可实现铜/铝金属层在陶瓷基板或复合材料散热器上的低温沉积,避免热应力损伤。研究中的GPR和神经网络预测模型可替代耗时的FEM仿真,快速优化喷涂参数(颗粒速度、材料组合),精准控制涂层嵌入深度和展平度,提升功率模块的热导率和界面结合强度。该数据驱动方法可集成到PowerTitan储能系统的智能制造流程,通过机器学习实现涂层质量的在线预测与工艺自适应调整,降低研发成本,提高产品一致性和可靠性,支撑高功率密度器件的散热性能优化。