← 返回
微电网的统一物理信息神经网络框架及其在电压稳定性分析中的应用
Uniform Physics Informed Neural Network Framework for Microgrid and Its Application in Voltage Stability Analysis
| 作者 | Renhai Feng · Khan Wajid · Muhammad Faheem · Jiang Wang · Fazal E. Subhan · Muhammad Shoaib Bhutta |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 微电网 深度学习 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 物理信息神经网络 重庆电力系统 模型参数提取 统一物理信息神经网络 电压稳定性监测 |
语言:
中文摘要
本文聚焦物理信息神经网络PINN在光伏PV、风电和储能设备模型参数提取中的应用。准确提取这些模型参数对有效控制和优化重庆电力系统CPS整体稳定性至关重要。尽管提出众多算法解决该问题,准确可靠提取参数仍是重大挑战。本文提出改进PINN命名为统一物理信息神经网络UPINN,采用基于近端策略优化PPO的强化学习进行参数提取。UPINN通过四种策略克服PINN困难:反馈算子、GRU门控机制、历史种群传递算子和PPO辅助强化学习修正因子。UPINN模型迭代训练以最大化参数和减少RMSE。UPINN准确提取参数并描述PV、风电和储能设备模型行为,通过参数调整和RMSE评估收敛至最优解。UPINN应用于CPS实时电压稳定性监测,结果显示UPINN在准确性和稳定性方面优于其他神经网络模型。
English Abstract
This paper focus on the application of Physics Informed Neural Network (PINN) for extracting parameters of photovoltaic (PV), wind, and energy storage equipment models. Accurately extracting the parameters of these models is essential for effectively controlling and optimizing the overall stability of Chongqing power system (CPS). Despite numerous algorithms proposed to tackle this issue, accurately and reliably extracting the parameters of these remains a significant challenge. This paper proposed an improved PINN, named Uniform Physics Informed Neural Network (UPINN), with Proximal Policy Optimization (PPO) based reinforcement learning, for extortion of parameters of these models. The PINN difficulty is overcome in UPINN by configuring four strategies: feedback operator, GRU gating mechanisms, transfer operator with historic population, and modification factor with PPO aided reinforcement learning. UPINN models are trained iteratively to maximize parameters and reduce RMSE. UPINN accurately extracts parameters and describes the behavior of PV, wind, and energy storage equipment models as it converges towards optimal solutions through parameter adjustments and RMSE evaluations. The UPINN was implemented for real-time voltage stability monitoring of CPS. The results show that UPINN performs better than other neural network models in respect of accuracy and stability, demonstrating the effectiveness of improved strategies. Moreover, its emphasis the importance of computed and estimated indices obtained through UPINN for predicting voltage collapse occurrences within the system.
S
SunView 深度解读
该物理信息神经网络技术对阳光电源设备建模和电网分析有重要应用价值。阳光iSolarCloud平台管理海量光伏储能设备,需要准确的设备模型进行仿真和优化。UPINN参数提取方法可应用于阳光设备数字孪生模型的自动标定。强化学习PPO算法对阳光智能控制策略优化有借鉴意义。电压稳定性监测是阳光储能系统电网支撑功能的关键应用。该研究展示的深度学习与物理建模融合思路,可支撑阳光开发更智能的电网分析和预测工具。