← 返回
基于协方差矩阵自适应进化策略并考虑氢气真实气体建模的孤立光伏-氢能微电网优化定容
Optimal sizing of isolated photovoltaic-hydrogen microgrids using covariance matrix adaptation evolution strategy considering real-gas modeling of hydrogen
| 作者 | Aubert Hervé · Mathieu Bressel |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 微电网 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Advanced modeling of the HESS taking into account real gas behavior of hydrogen. |
语言:
中文摘要
摘要 本文研究了协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy, CMA-ES)在孤立光伏-氢能微电网优化定容中的应用。系统组件(特别是光伏(PV)面板和氢能储能系统(HESS))的精确容量配置对于确保系统的成本效益、能源自主性和运行可靠性至关重要。本研究提出了一种基于氢气真实气体行为的先进HESS模型,相较于传统的理想气体近似方法,该模型在物理真实性方面具有显著提升。尽管诸如遗传算法(GA)和粒子群优化(PSO)等元启发式优化方法已广泛应用于微电网设计中,但进化策略(ES)的应用仍相对不足,尽管其在复杂高维问题上表现出色。特别是CMA-ES,仅需极少的参数调节,且能有效适应非凸、多模态的优化地形。通过对包括四种ES变体在内的五种进化算法进行对比评估,结果表明,与GA相比,CMA-ES能够避免早熟收敛,并在最终适应度值上实现26%的提升,展现出更强的鲁棒性以及更优的解质量。尽管“没有免费午餐”定理提醒我们不存在在所有问题上均最优的算法,但本研究凸显了CMA-ES作为一种高度可用、即插即用工具的优势,其在多种类型的问题上均表现出优异性能,因而特别适用于实际工程中的微电网设计应用。
English Abstract
Abstract This paper investigates the application of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to the optimal sizing of isolated photovoltaic-hydrogen microgrids. Accurate sizing of system components—particularly photovoltaic (PV) panels and hydrogen energy storage systems (HESS)—is critical to ensuring cost-effectiveness, energy autonomy, and operational reliability. This study introduces an advanced HESS model based on real gas behavior, offering improved physical realism over conventional ideal-gas approximations. While metaheuristic optimization methods such as genetic algorithms (GA) and particle swarm optimization (PSO) are widely used in microgrid design, Evolution Strategies (ES) remain significantly underutilized, despite their strong performance on complex, high-dimensional problems. CMA-ES, in particular, requires minimal parameter tuning and adapts effectively to non-convex, multimodal landscapes. A comparative evaluation of five evolutionary algorithms including 4 ES variants shows that CMA-ES avoids premature convergence, unlike GA, and achieves a 26 % improvement in final fitness value, demonstrating superior robustness to difficult problems and solution quality. While the No Free Lunch Theorem reminds us that no algorithm is universally optimal, this work highlights CMA-ES as a highly usable, plug-and-play tool with excellent performance across a wide range of problem types—making it especially suitable for real-world microgrid design applications.
S
SunView 深度解读
该CMA-ES优化算法对阳光电源光储微网系统设计具有重要应用价值。研究中的光伏-氢储能微网优化sizing问题,可直接应用于ST系列储能变流器与SG系列光伏逆变器的容量配置优化。CMA-ES算法在高维非凸问题上表现优异,较传统GA算法适应度提升26%,可集成至iSolarCloud平台用于离网微电网的智能规划与容量优化。真实气体建模方法为氢储能系统建模提供新思路,对PowerTitan等储能系统的多能互补场景设计具有参考意义,提升系统经济性与能源自治能力。