← 返回
基于K-means聚类算法与人工神经网络模型的并网型微电网优化能量管理
Optimized energy management in Grid-Connected microgrids leveraging K-means clustering algorithm and Artificial Neural network models
| 作者 | Peter Anuoluwapo Gbadeg · Yanxia Sun · Olufunke Abolaji Balogu |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 336 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 微电网 可靠性分析 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | This study integrates **One-to-One-Based Optimization (OOBO) K-means clustering and Artificial Neural Networks (ANNs)** to enhance the efficiency scalability and adaptability of energy management in grid-connected microgrids. |
语言:
中文摘要
摘要 随着可再生能源(RESs)在并网型微电网中的不断集成,亟需先进的能量管理策略以提升系统的效率、可靠性与可持续性。本研究提出了一种基于一对一优化器(One-to-One-Based Optimizer, OOBO)的优化能量管理框架,用于微电网调度,并结合K-means聚类算法与人工神经网络(Artificial Neural Networks, ANNs)实现负荷预测。所提出的方法能够动态调度分布式能源(DERs)、电池储能系统(BESS)以及柴油发电机,在最小化运行成本和碳排放的同时实现高效运行。仿真结果表明,基于OOBO的优化方法可使运行成本降低20%至48%,碳排放减少25%至38%,性能优于粒子群优化(PSO)、遗传算法(GA)和差分进化(DE)等传统优化方法。对比分析进一步表明,OOBO具有更优的收敛速度,计算时间减少了30%至45%,适用于实时应用场景。此外,本研究评估了三种运行场景:仅依赖柴油发电机供电、不含BESS的优化调度、以及包含BESS的优化调度。结果显示,相较于仅使用柴油发电机的配置,引入BESS可使碳排放降低38%。本工作的创新之处在于将OOBO算法、人工智能驱动的预测模型与自适应资源调度机制进行协同集成,从而确保最优的成本节约与能源利用效率。实验结果验证了所提框架的良好可扩展性与鲁棒性,使其成为未来多微电网及多能系统应用中极具前景的解决方案。这些发现为推动可持续能源转型奠定了坚实基础,有助于减少对化石燃料的依赖,并增强电网稳定性。
English Abstract
Abstract The increasing integration of renewable energy sources (RESs) in grid-connected microgrids necessitates advanced energy management strategies to enhance efficiency, reliability, and sustainability. This study proposes an optimized energy management framework leveraging the One-to-One-Based Optimizer (OOBO) for microgrid scheduling, combined with K-means clustering and Artificial Neural Networks (ANNs) for load forecasting. The proposed method dynamically schedules distributed energy resources (DERs), battery energy storage systems (BESS), and diesel generators while minimizing operational costs and carbon emissions. Simulation results demonstrate that the OOBO-based optimization achieves a 20–48% reduction in operational costs and a 25–38% decrease in carbon emissions, outperforming conventional methods such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution (DE). The comparative analysis highlights the superior convergence speed of OOBO, reducing computational time by 30–45%, making it suitable for real-time applications. Furthermore, the study evaluates three scenarios: reliance solely on a diesel generator, optimization without BESS, and optimization with BESS, where BESS integration led to a 38% reduction in emissions compared to diesel generator-only configurations. The novelty of this work lies in the synergistic integration of OOBO, AI-driven forecasting models, and adaptive resource scheduling, ensuring optimal cost savings and energy efficiency. The results confirm the scalability and robustness of the proposed framework, making it a promising solution for future multi-microgrid and multi-energy system applications. These findings provide a strong foundation for sustainable energy transitions, reducing dependence on fossil fuels and enhancing grid stability.
S
SunView 深度解读
该研究的OOBO优化算法与AI负荷预测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。研究验证储能系统可降低38%碳排放,与我司ESS解决方案的调度优化方向一致。K-means聚类与ANN模型可集成至iSolarCloud平台,提升微电网实时调度能力。OOBO算法30-45%的计算效率提升为GFM/GFL控制策略优化提供新思路,可应用于多微网协同场景,增强电网稳定性与经济性。