← 返回
储能系统技术 储能系统 微电网 深度学习 ★ 5.0

基于最优FNN的高实时性与良好可解释性的并网微电网电池能量管理系统

Optimal FNN-Based Energy Management System With High Real-Time Performance and Good Interpretability for Battery in Grid-Connected Microgrid

作者 Bin Liu · Dan Wang · Jiawei Huang · Chengxiong Mao
期刊 IEEE Transactions on Industrial Electronics
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 微电网 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 能源管理系统 模糊神经网络 微电网 可再生能源 实时控制
语言:

中文摘要

本文提出一种基于模糊神经网络(FNN)的新型能量管理系统(EMS),通过实时控制电池充放电功率,最小化并网微电网中可再生能源发电与负荷需求之间的功率失配,提升可再生能源的就地消纳能力。该系统采用在线FNN控制器快速响应净负荷的随机波动,参数通过周期性离线训练更新。仿真结果表明:所提FNN-EMS在优化性能上平均优于基准方法18.0217%;具备秒级实时响应能力;且所有FNN参数具有明确物理意义,具有良好可解释性。实验平台验证结果与仿真一致,证明了该系统的有效性与实用性。

English Abstract

In this article, a novel energy management system (EMS) is presented for a grid-connected microgrid using the fuzzy neural network (FNN), aiming to minimize the mismatch between renewable power generation and load power demand in the microgrid by controlling the battery charge/discharge power in real time, so as to effectively promote the local consumption of renewable energy. An on-line FNN controller is used to rapidly generate energy management instructions in response to the random variations of the net load power in real time, where the parameters are updated through off-line training periodically. The simulation results show that: 1) the presented FNN-based EMS can get better optimization results compared to each benchmark EMS, achieving an average decrease of 18.0217% on the optimization function value in all tested cases when regarding the best performing one among benchmark EMSs as the comparison object; 2) the presented FNN-based EMS has high real-time performance on level of seconds; and 3) the presented FNN-based EMS has good interpretability that all the used parameters in the FNN have interpretable meanings. The experimental results on the testbed match well with the corresponding simulation results, demonstrating the effectiveness and practicability of the presented FNN-based EMS for practical applications.
S

SunView 深度解读

该FNN能量管理技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。其秒级实时响应能力可显著提升储能系统在微电网场景下的功率调节性能,优化可再生能源就地消纳率平均达18%以上。该技术的良好可解释性与阳光电源iSolarCloud云平台的智能诊断功能高度契合,可实现储能系统运行策略的透明化管理。周期性离线训练结合在线快速响应的架构,为ST储能变流器的EMS算法升级提供新思路,特别适用于光储一体化项目中电池充放电策略的智能优化,可有效延长电池寿命并提升系统经济性。