← 返回
储能系统技术 储能系统 微电网 深度学习 ★ 4.0

一种结合数据驱动预测与超 twisting 控制的低碳微电网混合方法

A hybrid approach involving data driven forecasting and super twisting control action for low-carbon microgrids

作者 Naghmash Ali · Xinwei Shen · Hammad Armgha
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 398 卷
技术分类 储能系统技术
技术标签 储能系统 微电网 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 Proposed a ResNet-D framework for real-time dispatch and MPPT in hydrogen-based microgrids.
语言:

中文摘要

摘要 本文提出了一种基于两级密集残差神经网络的优化框架,旨在提升微电网中能量管理系统(EMS)的运行效率。该框架解决了传统数值优化方法在求解经济调度问题时存在的不足,这些传统方法通常优先考虑精度而牺牲了实时性能,并且未能充分最大化可再生能源的发电量。所提出的框架在上层控制中不仅能够求解经济调度问题,还能优化来自可再生能源的功率输出。在本地层面,采用超 twisting 滑模控制策略,以精确跟踪由能量管理系统生成的参考指令,并确保直流母线电压的精准调节。框架的稳定性通过李雅普诺夫稳定性准则进行了理论验证。该优化框架在一个容量为550 kW、基于600 V电-氢的孤岛型微电网系统上进行了测试。通过使用OPAL-RT OP5707XG设备进行硬件在环实验,验证了其实时仿真的有效性。

English Abstract

Abstract This research paper introduces a two-level dense residual neural network-based optimization framework designed to enhance the efficiency of energy management systems in microgrids. The framework addresses the shortcomings of conventional numerical optimization methods for solving the economic dispatch problem, which often prioritize accuracy over real-time performance and fail to maximize power generation from renewable energy sources. The proposed framework’s upper-level control not only solves the economic dispatch problem but also optimizes power output from renewable sources. At the local level, a super-twisting sliding mode control is employed to accurately track EMS-generated references and ensure precise DC bus regulation. The stability of the framework is validated using Lyapunov stability criteria. The framework is tested on a 600 V electric-hydrogen based islanded microgrid system with a 550 kW capacity. Real-time simulations are validated through hardware-in-the-loop experiments using the OPAL-RT OP5707XG.
S

SunView 深度解读

该混合优化框架对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。论文提出的双层密集残差神经网络可优化微电网经济调度,超扭曲滑模控制实现精确直流母线调控,与阳光电源GFM/GFL控制技术高度契合。该方法在600V氢电混合微网的实时验证表明,可提升储能系统EMS响应速度和新能源消纳率,为iSolarCloud平台集成AI预测性调度算法提供创新思路,增强阳光电源微网解决方案的智能化水平和经济性。