← 返回
用于评估中压电网可靠性的图神经网络
Graph neural networks for assessing the reliability of the medium-voltage grid
| 作者 | Charlotte Cambier van Nooten · Tomvan de Poll · Sonja Füllhas · Jacco Heres · Tom Heskes · Yuliya Shapovalov |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 384 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Introduces a GIN-based framework for n-1 contingency analysis in medium voltage grids. |
语言:
中文摘要
摘要 随着向可再生能源转型以及传统发电容量的减少,确保电力系统可靠性正变得日益具有挑战性。配电系统运营商(Distribution System Operators, DSOs)通过验证n-1安全准则来实现电网可靠性,即利用开关策略重新配置电网并恢复供电。尽管DSOs通常运行辐射状电网,但政府法规和诸如平均停电分钟数等可靠性指标要求尽可能通过重构实现供电连续性。尽管可靠性评估在电网运行中具有关键作用,但当前的方法(如数学优化方法)往往计算成本高昂,难以适用于大规模电网。本文针对这些局限性,提出了一种图神经网络(Graph Neural Networks, GNNs)的新应用,以解决n-1安全准则问题,并直接利用电力网络固有的图结构。与传统的机器学习方法不同,GNN能够直接处理图结构数据,因此特别适用于复杂的电网拓扑结构。本研究引入了一种受图同构网络(Graph Isomorphic Network, GIN)启发的框架,该框架能够融合节点和边的特征,从而更全面地表示电网设备及其连接关系。这种GIN启发的框架不仅能够有效泛化到未见过的电网结构,而且显著降低了计算时间,其预测速度相比传统的基于优化的方法可加快高达1000倍。研究结果表明,本文提出的方法为DSO提供了一种计算高效且可扩展的解决方案,有助于提升电网可靠性评估的效率与操作性能,并为更稳健的实时事故预案规划开辟了新路径。
English Abstract
Abstract Ensuring electricity grid reliability becomes increasingly challenging with the shift towards renewable energy and declining conventional capacities. Distribution System Operators (DSOs) aim to achieve grid reliability by verifying the n-1 contingency criterion, ensuring reconfiguring and restoring power distribution through switching strategies. While DSOs operate radial grids, government regulations and reliability metrics, such as the average minutes without power, necessitate achieving continuity as closely as possible through reconfiguration. Despite the critical role of reliability assessment, current methods such as mathematical optimisation approaches are often computationally expensive and impractical for large-scale grids. This paper addresses these limitations by proposing a novel application of Graph Neural Networks (GNNs) to tackle the n-1 contingency criterion, directly leveraging the inherent graph structure of electrical networks. Unlike traditional machine learning methods, GNNs directly handle graph-structured data, making them well-suited for complex grid topologies. This study introduces a Graph Isomorphic Network (GIN)-inspired framework designed to incorporate both node and edge features, enabling a more comprehensive representation of grid assets and connectivity. The GIN-inspired framework not only generalises effectively to unseen grid structures but also significantly reduces computation times, demonstrating prediction times up to 1000 times faster compared to traditional optimisation-based approaches. These findings indicate that our approach provides a computationally efficient and scalable solution for DSOs, enhancing the reliability and operational efficiency of energy grid assessments, and opening up the way for more robust real-time contingency planning.
S
SunView 深度解读
该图神经网络可靠性评估技术对阳光电源储能系统和微电网解决方案具有重要价值。可应用于PowerTitan储能系统的n-1容错设计,通过GNN快速评估ST系列PCS在配电网重构中的可靠性,预测时间提升1000倍。结合iSolarCloud平台可实现实时故障预测和拓扑优化,增强分布式光储系统的供电连续性。该方法为阳光电源开发智能电网重构算法、提升VSG控制策略的容错能力提供创新思路,支撑大规模新能源接入场景下的配电网可靠性管理。