← 返回
储能系统技术 储能系统 可靠性分析 深度学习 ★ 5.0

一种基于深度学习的配电网谐波在线估计技术

An Online Harmonic Estimation Technique Based on Deep Learning in Distribution Networks

作者 Amir Taghvaie · Tharindu Fernando · Firuz Zare · Dinesh Kumar · Clinton Fookes
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 配电网 谐波估计 深度学习 时间卷积神经网络 电力质量
语言:

中文摘要

随着现代电力电子变换器在配电网中的广泛应用,谐波问题日益突出,严重影响电能质量,可能导致设备过热、误跳闸和故障。传统谐波分析方法难以准确估计谐波,且现有在线估计技术尚不完善。本文提出一种基于深度神经网络(DNN)的深度学习方法,用于实现配电网中谐波的快速、实时在线估计。所提方法采用新型时间卷积神经网络(TCNN)结构,并结合双回归头网络分别估计电压与电流谐波的幅值和相位角,具备强适应性和灵活性。通过引入在线训练机制,模型可快速响应非平稳运行条件。实验基于包含变频调速装置与三相二极管整流器的实际系统验证了该方法的有效性。

English Abstract

The escalating use of modern power electronics converters in distribution networks gives rise to power quality challenges, particularly harmonics. Harmonics pose a significant threat to the network, necessitating their minimization to prevent detrimental impacts such as thermal overheating, trips, and faults. Traditional analytical techniques for determining and accurately estimating the harmonic emissions in the network prove ineffective; furthermore, the online estimation of harmonics, which can assist network operators in employing diverse methods to mitigate harmonics and enhance the reliability and efficiency of networks, is currently inadequate. This article, therefore, proposes a deep learning (DL) technique based on deep neural network (DNN) for harmonic estimation in distribution networks. This technique is characterized by its online, quick, and real-time nature. The proposed DNN method can estimate complex and nonlinear relationships observed within distribution networks. A novel temporal convolution neural network (TCNN) architecture associated with two regressor heads has been proposed for estimating magnitudes and phase angles of voltage and current harmonics. It employs an online training paradigm, ensuring rapid compliance to nonstationary conditions. According to the model training results, the proposed TCNN model training brings more flexibility and adaptability to the network in various operational conditions. The proposed technique is validated using a practical experiment involving an adjustable speed drive (ASD) associated with three-phase diode-rectifiers connected to a distribution network.
S

SunView 深度解读

该基于深度学习的谐波在线估计技术对阳光电源多条产品线具有重要应用价值。在ST系列储能变流器和PowerTitan大型储能系统中,可实时监测并预测谐波污染,优化PWM调制策略以主动抑制谐波注入;在SG系列光伏逆变器中,结合MPPT算法实现电能质量与发电效率的协同优化;在充电桩产品中,可应对非线性负载引起的谐波问题,提升充电效率和电网友好性。文中提出的时间卷积神经网络(TCNN)结构和在线训练机制,可集成到iSolarCloud云平台,实现分布式新能源系统的智能谐波诊断与预测性维护,显著提升阳光电源产品在复杂电网环境下的电能质量管控能力和系统可靠性。