← 返回
使用深度学习方法预测锂离子电池健康状态退化
Lithium-Ion Battery State of Health Degradation Prediction Using Deep Learning Approaches
| 作者 | Talal Alharbi · Muhammad Umair · Abdulelah Alharbi |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS 可靠性分析 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 锂离子电池健康状态预测 集中式学习 分布式学习 1D卷积神经网络 数据隐私 |
语言:
中文摘要
及时预测锂离子电池健康状态对电池管理和寿命至关重要。传统集中式深度学习模型显示良好结果,但因需在单个节点收集和训练数据引发数据隐私担忧。本研究通过利用集中式即深度学习和分散式即联邦学习方法应对该挑战进行健康状态预测。使用包含充放电循环的NASA电池数据集进行模型训练和评估。集中式方法使用三种深度学习架构:1D卷积神经网络、CNN加长短期记忆网络和CNN加门控循环单元。1D CNN模型性能最佳展示强大预测能力,因此分散式学习即联邦学习中1D CNN模型与联邦平均技术在五个客户端使用,允许本地训练无需共享原始数据。结果显示分散式学习期间最高测试RMSE为0.666和MAPE为0.980,集中式方法在不同电池间显示不同性能。分散式方法有效平衡性能和隐私,突出联邦学习在锂离子电池健康状态预测中的可靠性。
English Abstract
Timely prediction of the State of Health (SoH) of lithium-ion batteries is important for battery management and longevity. Traditional centralized deep learning models have shown promising results, but they raise concerns related to data privacy, as data needed to be collected and trained on a single node. This study addresses this challenge by utilizing both centralized (i.e., deep learning) and decentralized (i.e., federated learning) approaches for SoH prediction. The NASA battery dataset, containing charging and discharging cycles, is used for model training and evaluation. Three deep learning architectures 1D Convolutional Neural Networks (CNN), CNN plus Long Short-Term Memory (LSTM), and CNN plus Gated Recurrent Units (GRU) are used in the centralized approach. The 1D CNN model outperforms, demonstrating strong predictive capabilities, thus for decentralized learning (i.e., federated learning), the 1D CNN model is utilized with federated averaging technique across five clients, allowing for local training without sharing raw data. Obtained results shows that the highest testing RMSE (0.666) and MAPE (0.980) are observed during decentralized learning, while the centralized approach shows varying performance across different batteries. The decentralized approach effectively balances performance and privacy, highlighting the reliability of federated learning in SoH prediction for lithium-ion batteries.
S
SunView 深度解读
该联邦学习电池诊断技术对阳光电源储能系统数据安全具有重要价值。阳光管理的大规模储能电站涉及海量电池数据,数据隐私和安全是核心关切。该联邦学习方法可在不上传原始数据的情况下实现全局模型优化,阳光可将该技术应用于BMS系统,实现跨电站的电池健康状态模型协同训练,提升诊断精度同时保护用户数据隐私,符合数据安全法规要求。