← 返回
储能系统技术 储能系统 电池管理系统BMS 深度学习 ★ 5.0

基于TCN-LSTM神经网络与迁移学习的数字孪生支持型电池状态估计

Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

语言:

中文摘要

准确估计电池荷电状态(SOC)、健康状态(SOH)及剩余使用寿命(RUL)对储能技术发展至关重要。本文提出一种融合时间卷积网络(TCN)与长短期记忆网络(LSTM)的数字孪生(DT)支持型电池状态估计算法。构建四层层次化DT架构以克服传统电池管理系统在计算与存储上的局限,并引入基于迁移学习的在线TCN-LSTM模型,实现神经网络参数的动态更新与实时精度优化。实验结果表明,该方法在90个循环数据下SOC、SOH和RUL的平均均方根误差分别为1.1%、0.8%和0.9%,显著优于传统CNN等模型,展现出卓越的鲁棒性与适应性。

English Abstract

Estimating battery states such as State of Charge(SOC)and State of Health(SOH)is an essential component in developing energy storage technologies,which require accurate estimation of complex and nonlinear systems.A significant challenge is extracting pertinent spatial and temporal features from original battery data,which is crucial for efficient battery management systems.The emergence of digital twin(DT)tech-nology offers a novel opportunity for performance monitoring and management of lithium-ion batteries,enhancing collaborative capacity among different battery state estimation techniques and enabling optimal operation of battery storage units.In this study,we propose a DT-supported battery state estimation method,in collaboration with the temporal convolutional network(TCN)and the long short-term memory(LSTM),to address the challenge of feature extraction.Firstly,we introduce a 4-layer hierarchical DT to overcome computational and data storage limitations in conventional battery management systems.Secondly,we present an online algorithm,TCN-LSTM for battery state estimation.Compared to conventional methods,TCN-LSTM outperforms other cyclic networks in various sequence modelling tasks and exhibits reduced reliance on the initial state conditions of the battery.Our methodology employs transfer learning to dynamically adjust the neural network parameters based on fresh data,ensuring real-time updating and enhancing the DT's accuracy.Focusing on SOC,SOH and Remaining Useful Life(RUL)estimation,our model demonstrates exceptional results.When testing with 90 cycle data,the average root mean square error(RMSE)values for SOC,SOH,and RUL are 1.1%,0.8%,and 0.9%respectively,significantly outperforming traditional CNN's 2.2%,2.0%and 3.6%and others.These results un-equivocally demonstrate the contribution of the DT model to battery management,highlighting the outstanding robustness of our proposed method,showcasing consistent performance across various conditions and superior adaptability compared to other models.
S

SunView 深度解读

该数字孪生支持的电池状态估计技术对阳光电源ST系列储能系统和PowerTitan大型储能方案具有重要应用价值。TCN-LSTM融合架构可直接集成至BMS系统,实现SOC/SOH/RUL的高精度实时估计(RMSE<1.1%),显著提升电池全生命周期管理能力。四层DT架构突破边缘侧计算瓶颈,可与iSolarCloud云平台协同,通过迁移学习实现多电池组参数动态优化,减少现场标定成本。该技术可增强储能系统预测性维护能力,优化充放电策略,延长电池寿命,并为构网型储能系统提供更精准的容量预测,提升电网支撑能力和系统经济性。