← 返回
储能系统技术 储能系统 电池管理系统BMS 深度学习 ★ 5.0

基于神经网络模仿学习的随机电池管理系统近似

Neural Network-Based Imitation Learning for Approximating Stochastic Battery Management Systems

作者 Andrea Pozzi · Alessandro Incremona · Daniele Toti
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 电池管理系统BMS 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 锂离子电池 充电过程优化 随机预测控制 模仿学习 电池管理系统
语言:

中文摘要

锂离子电池在电动汽车中发挥关键作用,但优化充电过程以提升电池寿命、安全性和效率仍是重大挑战。传统预测控制方法依赖精确模型,受老化、生产变异和运行条件导致的参数不确定性限制。随机预测控制策略可通过将不确定性纳入优化过程解决该问题,但引入大量计算复杂性。本文提出新型方法,通过模仿学习高效近似随机预测控制策略,通过离线训练显著降低计算负担。该方法利用Dataset Aggregation算法克服分布偏移问题。基于详细电化学模型的仿真验证方法有效性,遵守概率约束,为先进电池管理系统提供可扩展且计算高效的解决方案。

English Abstract

Lithium-ion batteries play a pivotal role in enabling eco-friendly mobility, particularly in electric vehicles, but optimizing their charging process to improve battery lifespan, safety, and overall efficiency remains a significant challenge. Traditional predictive control methods are limited by their reliance on precise models, which are often hindered by uncertainties in battery parameters due to aging, production variability, and operational conditions. While stochastic predictive control policies can address these uncertainties by incorporating them directly into the optimization process, they typically introduce considerable computational complexity. In response to this challenge, this paper presents a novel approach that adapts imitation learning to efficiently approximate stochastic predictive control strategies, thus significantly reducing the computational burden through offline training. Specifically, the proposed method leverages the Dataset Aggregation algorithm to overcome the issue of distributional shift, a common limitation in imitation learning frameworks. Simulations based on a detailed electrochemical model demonstrate the effectiveness of the method, adhering to probabilistic constraints while offering a scalable and computationally efficient solution for advanced battery management systems.
S

SunView 深度解读

该随机电池管理优化技术对阳光电源新能源汽车电驱控产品线有重要价值。阳光车载OBC和BMS面临电池参数不确定性和复杂工况的挑战。模仿学习方法可将高计算复杂度的随机优化控制策略离线训练为轻量化神经网络模型,部署到阳光嵌入式BMS硬件中。该技术可提升阳光BMS在不确定条件下的充电优化性能,延长电池寿命,提高充电安全性和效率,同时满足实时控制的计算约束。