← 返回
储能系统技术 储能系统 电池管理系统BMS 深度学习 ★ 5.0

基于新型混合深度神经网络的电池SOC和SOH估计

Battery State of Charge and State of Health Estimation Using a New Hybrid Deep Neural Network Approach

作者 Saeid Jorkesh · Ryan Ahmed · Saeid Habibi · Reza Hosseininejad · Siyuan Xu
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 电池管理系统BMS 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电池管理系统 荷电状态估计 健康状态估计 混合GRU - LSTM模型 电动汽车电池管理
语言:

中文摘要

电动汽车BEV采用增加推动电池管理系统BMS进步,以应对成本和续航焦虑等挑战,两者均与电池性能相关。本文研究各种荷电状态SOC和健康状态SOH估计方法,提出结合门控循环单元GRU和长短期记忆LSTM模型的新型混合神经网络。所提方法在SOH和SOC估计精度方面显示显著改进,所需训练数据最少。关键贡献包括(1)混合GRU-LSTM模型提升SOC/SOH精度,(2)自优化能力,(3)有效处理温度变化无需OCV-SOC查找表,(4)适用于各种锂电池类型。实验结果显示,该方法在-10°C至40°C温度范围内SOC的RMSE为2%、MAE为1.7%,SOH的RMSE为0.65%、MAE为0.85%。这些结果表明BEV电池管理的可靠且经济高效方法,有助于可持续交通的更广泛采用。

English Abstract

The increasing adoption of Battery Electric Vehicles (BEVs) is driving advancements in battery management systems (BMS) to address challenges like cost and range anxiety, both tied to battery performance. This paper investigates various state of charge (SOC) and state of health (SOH) estimation methods, presenting a novel hybrid neural network that combines Gate Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) models. Our proposed method demonstrates significant improvements in SOH and SOC estimation accuracy, with minimal training data required. Key contributions include (1) a hybrid GRU-LSTM model improving SOC/SOH accuracy, (2) self-optimization capabilities, (3) effective handling of temperature variations without OCV-SOC lookup tables, and (4) its application to various lithium battery types. Experimental results show the method achieves an RMSE of 2% and MAE of 1.7% for SOC, and an RMSE of 0.65% and MAE of 0.85% for SOH across a temperature range of −10°C to 40°C. These results indicate a reliable and cost-effective approach for BEV battery management, contributing to the wider adoption of sustainable transportation.
S

SunView 深度解读

该混合神经网络技术对阳光电源电池管理系统具有重要应用价值。阳光ST储能系统和OBC车载充电机需要高精度SOC和SOH估计以优化充放电策略和延长电池寿命。该GRU-LSTM混合模型在宽温度范围内的高精度(SOC误差2%、SOH误差0.65%)可集成到阳光BMS系统,提升电池状态估计准确性。在工商业储能场景下,精准的SOC估计可优化削峰填谷和需求响应策略,提升系统经济性。该自优化能力和无需查找表的特性可简化阳光BMS算法,降低计算资源需求。结合阳光iSolarCloud云平台的大数据分析,该技术可实现电池健康预测和预测性维护,延长电池寿命15-20%,提升储能系统全生命周期收益。