找到 3 条结果
一种基于物理信息的混合多任务学习方法用于锂离子电池早期寿命阶段的全生命周期老化估计
A Physics-Informed Hybrid Multitask Learning for Lithium-Ion Battery Full-Life Aging Estimation at Early Lifetime
Shuxin Zhang · Zhitao Liu · Yan Xu · Hongye Su · IEEE Transactions on Industrial Informatics · 2024年9月
锂离子电池健康状态估计是电池管理系统的关键环节,现有方法主要基于机理模型或数据驱动方法。本文提出一种融合机理知识与数据驱动的物理信息混合多任务学习框架,可在电池早期寿命阶段实现全生命周期老化状态估计。通过引入混合老化模式特征,融合电极级健康状态与数据驱动信息,构建电化学机理指导的多任务生成模型,用于估计固相颗粒与电解质中的Li⁺浓度动态。采用电极级状态约束训练策略,确保模型符合因果性。在三个电池数据集上验证了从电化学到单体层面的老化状态估计性能。相比传统方法,所提方法在估计精度与实时性方面均表现...
解读: 该物理信息混合多任务学习技术对阳光电源储能产品线具有重要应用价值。在PowerTitan大型储能系统和ST系列储能变流器的BMS中,可实现电池早期寿命阶段的全生命周期老化预测,显著提升电池健康状态估计精度。通过融合电化学机理模型与数据驱动方法,能在iSolarCloud云平台实现电极级健康状态监测与...
基于长短期记忆模型利用短历史数据的锂离子电池健康状态估计
Lithium-Ion Battery SOH Estimation Based on a Long Short-Term Memory Model Using Short History Data
Wenbin Li · Changwei Lin · Seyedmehdi Hosseininasab · Lennart Bauer 等5人 · IEEE Transactions on Power Electronics · 2025年1月
准确估计电池健康状态(SOH)对于车辆应用中电池管理系统的预测与健康管理至关重要。由于在实际应用中部分循环是常见情况,使用灵活电压范围短期数据的算法正受到广泛关注。为此,本文提出了一种利用短期充电历史数据的驱动模型。该模型将增量容量分析曲线分类与基于长短期记忆网络的时间序列预测相结合,用于在荷电状态(SOC)变化较小的情况下进行SOH估计。使用了三个具有不同电池化学体系和老化轨迹的数据集进行验证。结果表明,所提出的模型实现了准确的SOH估计,平均绝对误差和均方根误差在1%至2%之间。该模型的突出...
解读: 从阳光电源储能系统业务视角来看,这项基于LSTM的电池SOH短历史数据估算技术具有显著的工程应用价值。当前我司储能产品线涵盖工商业储能、大型地面电站及户用储能系统,精准的电池健康状态评估直接关系到系统全生命周期的安全性和经济性。 该技术的核心优势在于突破了传统SOH估算对完整充放电循环的依赖,仅需...
基于新型混合深度神经网络的电池SOC和SOH估计
Battery State of Charge and State of Health Estimation Using a New Hybrid Deep Neural Network Approach
Saeid Jorkesh · Ryan Ahmed · Saeid Habibi · Reza Hosseininejad 等5人 · IEEE Access · 2025年1月
电动汽车BEV采用增加推动电池管理系统BMS进步,以应对成本和续航焦虑等挑战,两者均与电池性能相关。本文研究各种荷电状态SOC和健康状态SOH估计方法,提出结合门控循环单元GRU和长短期记忆LSTM模型的新型混合神经网络。所提方法在SOH和SOC估计精度方面显示显著改进,所需训练数据最少。关键贡献包括(1)混合GRU-LSTM模型提升SOC/SOH精度,(2)自优化能力,(3)有效处理温度变化无需OCV-SOC查找表,(4)适用于各种锂电池类型。实验结果显示,该方法在-10°C至40°C温度范围...
解读: 该混合神经网络技术对阳光电源电池管理系统具有重要应用价值。阳光ST储能系统和OBC车载充电机需要高精度SOC和SOH估计以优化充放电策略和延长电池寿命。该GRU-LSTM混合模型在宽温度范围内的高精度(SOC误差2%、SOH误差0.65%)可集成到阳光BMS系统,提升电池状态估计准确性。在工商业储能...