← 返回
储能系统技术 储能系统 电池管理系统BMS 微电网 ★ 5.0

用于光伏微电网能量管理策略适应的VRLA-Gel蓄电池组原位性能评估

In-Situ performance assessment of VRLA-Gel battery bank for energy management strategies Adaptation in PV microgrids

作者 Khadim Ullah Jana · Ghjuvan Antone Faggianelli · Jean-Laurent Duchaud · Anne Migan-Dubois · Demba Diallo
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 343 卷
技术分类 储能系统技术
技术标签 储能系统 电池管理系统BMS 微电网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Calculate remaining performance of the in-situ battery bank without disassembling;
语言:

中文摘要

摘要 本文提出了一种实用、非侵入式的两步放电方法,用于估计在实际运行条件下工作的VRLA-Gel蓄电池组的剩余可用容量,该方法无需拆解电池或依赖历史电池管理系统(BMS)数据。所提出的方法首先通过短脉冲放电快速识别出性能良好和性能欠佳的电池,依据是电压下降幅度和放电轨迹。这一初步筛选使测试时间减少了近50%。随后进行分阶段放电阶段,通过将容量趋势映射到参考散点图上,进一步将剩余的性能欠佳电池细分为“一般”和“弱”两类。在第一步中,基于具有未知使用历史的单体VRLA-Gel电池,根据其动态特性建立了一个参考数据库。然后将该参考数据库应用于评估一个部署在真实光伏微电网中的1620Ah、48V/77kWh的原位蓄电池组,以确定其剩余性能。结果表明,该方法能够将原位蓄电池组分类为“良好”、“一般”和“弱”三类,分类一致性超过90%。该方法特别适用于历史记录或BMS数据不完整或不可用的改造场景。通过延长电池寿命、减少不必要的更换以及推迟回收处理,该方法有助于提升微电网的韧性,为环境可持续性和经济优化作出贡献。此外,该方法可适应其他依赖VRLA电池的应用场景,只需针对不同放电C倍率调整散点图作为新的参考即可。

English Abstract

Abstract This paper presents a practical, non-invasive two-step discharge method to estimate the remaining usable capacity of VRLA-Gel battery banks operating in field conditions without requiring disassembly or reliance on historical BMS data. The proposed approach begins with a short pulse discharge to quickly identify fresh and underperforming batteries based on voltage dips and discharge trajectories. This initial screening reduces testing time by nearly 50%. It is followed by a staggered discharge phase, which enables finer classification of the remaining underperforming batteries into average and weak groups by mapping capacity trends onto a reference scatter plot. In the first step, a reference database is developed from individually tested VRLA-Gel batteries of unknown usage history, categorized by their dynamics. This reference is then applied to evaluate a 1620Ah 48 V/77kWh in-situ battery bank deployed in a real PV microgrid to determine its remaining performance. Results showed that the method could classify in-situ battery banks into fresh, average, and weak groups with over 90 % classification consistency agreement. The method is particularly suited for retrofit conditions where historical logging or BMS data is incomplete or unavailable. It supports microgrid resilience by extending battery life, reducing unnecessary replacements, and delaying recycling—a contribution toward environmental sustainability and economic optimization. The proposed method is also adaptable to other VRLA-dependent applications, with modifications of the scatter plot as a new reference at respective discharge C-rates.
S

SunView 深度解读

该VRLA-Gel电池现场评估技术对阳光电源ST系列储能系统和PowerTitan产品具有重要应用价值。该方法通过两步放电测试实现90%以上分类准确率,无需历史BMS数据即可评估电池剩余容量,特别适用于改造项目。可集成至iSolarCloud平台实现预测性运维,优化电池全生命周期管理,延缓更换周期降低LCOS。该分类方法可适配不同C-rate场景,为微电网ESS解决方案提供电池健康分级策略,支撑能量管理系统优化调度,提升系统韧性与经济性,契合阳光电源储能系统智能化运维方向。