← 返回
通过优化微电网中混合储能系统退化成本模型实现多时间尺度调度
Multiple-time-scale scheduling by optimizing the degradation cost models of hybrid energy storage systems in microgrids
语言:
中文摘要
摘要 为了促进可再生能源的广泛应用,综合能源系统(IES)的研究已成为关键。然而,多能系统的协调运行以及电池的耐久性约束,尤其是在混合储能系统(HESS)中的问题,仍然是重大挑战,制约了系统的经济效率与运行可靠性。本研究提出了一种短期能量调度模型,通过优化混合储能系统的退化成本来应对上述挑战。首先,建立了集成混合储能系统的能量管理系统框架。随后,基于各设备的运行特性,分别构建了化学电池、电解槽以及质子交换膜燃料电池(PEMFC)的退化成本模型。此外,为弥补现有方法在储能系统不同动态响应能力方面处理上的不足,采用了多时间尺度优化方法,将调度过程划分为快速和慢速两个时间尺度。在四种不同的慢时间尺度下对IES的综合成本进行了评估。具体而言,电池储能系统(BSS)负责短时间尺度的调度任务,而氢储能系统(HSS)则承担长时间尺度的调度任务。本研究的一个重要贡献在于时间敏感性分析,揭示了调度时间粒度对系统退化及成本的影响。最后,利用某一特定地区的真实可再生能源发电数据对所提方法进行验证,并与基于规则的调度方法进行了对比。结果表明,该方法有效降低了IES的综合成本,填补了现有方法论上的空白,在经济性能和运行可靠性方面均展现出显著提升。
English Abstract
Abstract To promote the widespread adoption of renewable energy, the study of integrated energy systems (IES) has become essential. However, the coordination of multi-energy systems and the durability constraints of batteries, particularly in hybrid energy storage systems (HESS), remain significant challenges, hindering their economic efficiency and operational reliability. In this study, a short-term energy scheduling model is proposed to address these challenges by optimizing the degradation costs of hybrid storage systems. First, a framework for an energy management system integrating hybrid storage systems is established. Then, degradation cost models for chemical batteries, electrolyzers, and proton exchange membrane fuel cells (PEMFC) are developed, based on the operational characteristics of each device. Furthermore, to address the gap in existing methods regarding the different dynamic response capabilities of storage systems, a multi-time scale optimization approach is adopted, dividing the scheduling process into fast and slow time scales. The comprehensive costs of the IES are evaluated under four distinct slow time scales. Specifically, the battery storage system (BSS) is tasked with short-term scheduling, while the hydrogen storage system (HSS) manages long-term scheduling. A key contribution of this work lies in the time-sensitivity analysis, which reveals the impact of scheduling granularity on system degradation and cost. Finally, the proposed method is validated using real-world renewable energy generation data from a specific location and compared against rule-based scheduling methods. The comprehensive cost of the IES is effectively reduced, bridging existing methodological gaps and demonstrating significant improvements in both economic performance and operational reliability.
S
SunView 深度解读
该多时间尺度调度技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。研究中的化学电池与氢储能分层调度策略,可直接应用于我司混合储能解决方案优化:ST系列PCS负责快时间尺度响应,氢储能系统承担慢时间尺度调度。退化成本模型可集成至iSolarCloud平台,实现预测性维护和全生命周期成本优化。多时间尺度协调控制与我司VSG技术结合,可提升微电网经济性和可靠性,为综合能源系统提供完整解决方案。