← 返回
储能系统技术 储能系统 微电网 可靠性分析 ★ 5.0

考虑电–氢–热混合储能系统的南极微电网多时间尺度优化经济调度

Optimal multi-timescale economic dispatch for Antarctic microgrids considering a hybrid electric–hydrogen–thermal energy storage system

作者 Jingxuan Zhang · Xinyue Chang · Yixun Xue · Jia Suab · Yinke Dou · Xiaoqing Hana · Hongbin Sun
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 345 卷
技术分类 储能系统技术
技术标签 储能系统 微电网 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Integrates temperature dependence and degradation into Antarctic energy storage.
语言:

中文摘要

摘要 南极科考站严重依赖柴油发电机,运行成本高昂且环境可持续性差。为解决这一问题,本文研究了一种经济调度策略,通过引入电–氢–热混合储能系统,提升能源供应可靠性并降低对柴油的依赖。首先,构建了一种温度依赖型储能模型,以适应南极极端低温环境条件。基于该模型,设计了多时间尺度混合储能系统:短期采用锂电池应对小时级功率波动,中期采用钒氧化还原液流电池平抑日级波动,长期利用氢储能缓解季节性能量不平衡;同时设计了混合热储能系统,包含短期热储能用于缓冲快速变化的热负荷,以及长期热储能以维持稳定的供热输出。在此基础上,提出一种多时间尺度协同优化经济调度策略,对各类储能的充放电操作进行优先级协调。构建了一个综合考虑运行成本、储能系统老化损耗及碳排放惩罚的多时间尺度优化框架,实现跨极昼与极夜周期的能量转移与平衡。针对极夜期间光伏发电长期零出力的挑战,本文提出了零敏感自适应聚类算法(ZSACA),有效降低了在极端光伏停运条件下数据聚类的误差。仿真结果表明,所提方法可使平准化度电成本降低24.27%,日均碳排放减少21.04%,全年氢储能荷电状态(SOC)保持在0.52以上。此外,电池寿命得以延长,可再生能源利用率显著提高,并在设备故障期间维持了能源供应的稳定性。研究结果表明,配备协同优化调度控制的混合储能系统为实现南极微电网的低碳化与能源安全提供了可行路径。

English Abstract

Abstract Antarctic research stations rely heavily on diesel generators, which are costly and environmentally unsustainable. To address this issue, we investigate an economic dispatch strategy that enhances energy reliability and reduces diesel dependence by integrating a hybrid electric–hydrogen–thermal energy storage system. First, a temperature-dependent energy storage model is developed, adapted to the extremely low-temperature conditions of Antarctica. Building on this model, a multi-timescale hybrid energy storage system is constructed. It incorporates short-term batteries, mid-term vanadium redox batteries, and long-term hydrogen storage to mitigate power fluctuations across hourly, daily, and seasonal timescales, respectively. In parallel, a hybrid thermal energy storage is designed, consisting of short-term thermal storage for buffering rapid heat load fluctuations and long-term storage for maintaining a stable heat supply. Subsequently, a multi-timescale co-optimization economic dispatch strategy is proposed to prioritize the charge and discharge operations of storage. A multi-timescale optimization framework is formulated, considering operating costs, energy storage degradation, and carbon emission penalties. This strategy enables coordinated energy shifting and balancing across polar day and polar night cycles. To address the prolonged zero-output challenge of photovoltaic during the polar night, this paper introduces the zero-sensitive adaptive clustering algorithm (ZSACA), which effectively reduces clustering errors under extreme photovoltaic outage conditions. Simulation results show that the proposed approach reduces the levelized cost of electricity by 24.27 %, decreases daily carbon emissions by 21.04 %, and keeps hydrogen storage SOC above 0.52 year-round. Battery lifespan is extended, renewable energy utilization is improved, and energy supply is stabilized during equipment failures. These findings suggest that hybrid storage systems with is formulated scheduling control offer a viable pathway to decarbonize and secure Antarctic microgrids.
S

SunView 深度解读

该多时间尺度混合储能调度技术对阳光电源极端环境微网解决方案具有重要价值。文中温度自适应储能模型可指导ST系列PCS在极寒环境的热管理优化;短中长期储能协同策略(电池-液流电池-氢储能)与PowerTitan系统架构高度契合,可提升多时间尺度能量平衡能力;零敏感聚类算法对极夜场景的处理,可增强iSolarCloud平台在极端工况下的预测维护精度;电热氢混合储能的协同优化思路,为阳光电源拓展高纬度、海岛等特殊场景微网方案提供技术参考,助力降低柴油依赖并实现碳减排目标。