← 返回
利用物理信息神经网络构建代理模型辅助强化学习优化智能电网能源管理
Optimizing energy management of smart grid using reinforcement learning aided by surrogate models built using physics-informed neural networks
| 作者 | Julen Cestero · Carmine Delle Femine · Kenji S. Muroa · Marco Quartulli · Marcello Restelli |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Novel PINN method for Smart Grid surrogates addressing RL sample efficiency. |
语言:
中文摘要
摘要 在智能电网场景下优化能源管理面临重大挑战,主要源于现实世界系统的复杂性以及各组件之间错综复杂的相互作用。强化学习(Reinforcement Learning, RL)正逐渐成为解决智能电网中最优潮流(Optimal Power Flow, OPF)问题的一种有效方案。然而,RL需要在给定环境中进行强制性的反复迭代才能获得最优策略,这意味着必须从一个很可能代价高昂的模拟器中获取样本,从而导致样本效率低下问题。在本研究中,我们通过使用基于物理信息神经网络(Physics-Informed Neural Networks, PINNs)构建的代理模型替代高成本的智能电网模拟器,显著优化了RL策略的训练过程,能够在远少于原始环境所需的时间内达到收敛结果。具体而言,我们将所提出的PINN代理模型与其他最先进的数据驱动型代理模型进行了性能对比测试,结果表明,对问题底层物理特性的理解使PINN代理模型成为我们研究中唯一能够成功学习到良好RL策略的方法,并且无需使用来自真实模拟器的样本。我们的研究表明,采用PINN代理模型相比不使用任何代理模型直接训练RL策略,可将训练速度提升50%,从而更快地获得与原始模拟器相当甚至相近性能水平的结果。
English Abstract
Abstract Optimizing the energy management within a smart grid scenario presents significant challenges, primarily due to the complexity of real-world systems and the intricate interactions among various components. Reinforcement Learning (RL) is gaining prominence as a solution for addressing the challenges of Optimal Power Flow (OPF) in smart grids. However, RL needs to iterate compulsively throughout a given environment to obtain the optimal policy. This means obtaining samples from a, most likely, costly simulator, which can lead to a sample efficiency problem. In this work, we address this problem by substituting costly smart grid simulators with surrogate models built using Physics-Informed Neural Networks (PINNs), optimizing the RL policy training process by arriving at convergent results in a fraction of the time employed by the original environment. Specifically, we tested the performance of our PINN surrogate against other state-of-the-art data-driven surrogates and found that the understanding of the underlying physical nature of the problem makes the PINN surrogate the only method we studied capable of learning a good RL policy, in addition to not having to use samples from the real simulator. Our work shows that, by employing PINN surrogates, we can improve training speed by 50 %, compared to training the RL policy without using any surrogate model, enabling us to achieve results with scores on par with the original simulator more rapidly.
S
SunView 深度解读
该研究采用物理信息神经网络(PINN)构建代理模型加速强化学习训练,对阳光电源ST系列储能变流器和PowerTitan系统的能量管理优化具有重要价值。通过PINN代理模型可将训练速度提升50%,能显著加快储能系统最优潮流控制策略的开发周期。该方法可应用于iSolarCloud平台的智能调度算法优化,提升多场景下储能PCS的实时响应能力,同时减少现场调试成本。结合阳光电源GFM/VSG控制技术,可进一步增强电网支撑能力和经济性。