← 返回
基于门控循环单元神经网络利用稀疏监测数据的车载超级电容器储能系统寿命预测
Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data
| 作者 | Li Wei · Yu Wang · Tingrun Lin · Xuelin Huang · Rong Yan |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 379 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The degradation trend is extracted from low-quality data. |
语言:
中文摘要
摘要 随着超级电容器在交通和能源领域的广泛应用,其服役寿命预测成为一个需要重点考虑的问题。由于车载超级电容器的老化过程与实际工况密切相关,其实际使用寿命可能与实验室测得的循环寿命不一致。然而,记录历史工作状况的车载监测数据质量较低,通常具有稀疏性和碎片化特征,导致难以提取有价值的信息。在我们前期的研究中,已成功从稀疏且碎片化的数据中获取了特征参数,但这些特征参数呈周期性变化,无法直接用于寿命预测。本文首先通过复合正弦函数与多项式时间序列分解模型,从特征参数中提取超级电容器的退化趋势项;其次,为弥补数据不足的问题,设计了一种门控循环单元(GRU)网络,用以生成符合历史数据演化趋势的更多样本数据。选取包括历史特征电容C、温度T以及时间拟合序列CtD在内的综合输入特征变量,以提高GRU网络预测的准确性,特征电容C的预测误差为2.36%。最终,实现了基于实际工作条件的车载超级电容器寿命预测。
English Abstract
Abstract With the increasing use of supercapacitor in transportation and energy sectors, service life prediction becomes an important aspect to consider. As the aging process of onboard supercapacitors is closely related to practical working conditions, the actual service life may be inconsistent with the cycle life measured in the laboratory. However, the low-quality onboard monitoring data recording the historical working conditions is usually sparse and fragmented, making it difficult to extract valuable information. In our previous study, we successfully obtained the characteristic parameters from sparse and fragmented data, whereas those characteristic parameters change periodically and couldn't be used directly for life prediction. In this paper, we firstly extract the degradation trend term of supercapacitor by a composite sine and polynomial time series decomposition model from the characteristic parameters. Secondly, in order to make up for the lack of data, a GRU network is designed to generate more sample data which is in consistent with historical data evolution trends. The combination of input characteristic variables including the extracted historical characteristic capacitance C , temperature T and the time fitting sequences C t D are selected to improve the accuracy of GRU predictions. The predictive error of the characteristic capacitance C is 2.36 %. Finally, the life prediction of on-board supercapacitors based on actual working conditions is realized.
S
SunView 深度解读
该超级电容寿命预测技术对阳光电源储能系统和充电桩产品具有重要价值。针对车载及储能应用中监测数据稀疏问题,GRU神经网络结合时序分解模型可实现2.36%高精度预测,可直接应用于ST系列PCS和PowerTitan储能系统的健康管理。该方法通过提取特征电容、温度等退化趋势,能有效补偿iSolarCloud平台碎片化数据不足,提升储能电站预测性维护能力。建议将此算法集成到智能运维系统,实现超级电容混合储能方案的全生命周期管理,降低突发故障风险,优化充电站能量缓冲单元的更换策略。