← 返回

用于交流最优潮流的高效计算数据合成:融合物理信息神经网络求解器与主动学习

Computationally efficient data synthesis for AC-OPF: Integrating Physics-Informed Neural Network solvers and active learning

作者 Jiahao Zhang · Ruo Peng · Chenbei Lu · Chenye Wu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 378 卷
技术分类 储能系统技术
技术标签 储能系统 SiC器件 地面光伏电站 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Realistic feasible and fast data synthesis via AC-OPF-tailored PINNs.
语言:

中文摘要

摘要 本研究针对在发布保护隐私的交流最优潮流(AC Optimal Power Flow, AC-OPF)运行数据时面临的隐私性、实用性与效率性挑战展开研究。传统方法在差分隐私(Differential Privacy, DP)框架下向运行数据(即负荷需求数据和调度配置文件)中注入噪声,但此类操作常导致数据违反物理约束,产生不现实且不可行的结果,从而降低数据的实用性。尽管基于AC-OPF求解器的双层后处理优化能够强制实现物理可行性,但由于后处理目标与AC-OPF本身目标之间存在偏差,仍会导致结果不一致,损害数据实用性。此外,其非凸性和对抗性本质使得计算成本极高,进一步阻碍了高效的数据发布。为克服上述挑战,本文提出一种新的DP方法,该方法结合对负荷需求数据的策略性噪声注入,并同步计算相应的调度配置文件,从而确保所生成的隐私保护数据满足AC-OPF的物理约束条件。为加速数据发布过程,我们采用物理信息神经网络(Physics-Informed Neural Networks, PINNs),在保障解的物理可行性的基础上显著提升计算效率。进一步地,我们引入主动学习机制,以识别并选取最具信息量的数据样本进行训练,从而增强PINN的训练效果,在维持解精度的同时优化整体效率。在IEEE标准测试系统上开展的综合实验表明,相较于传统方法,本方法在性能表现与计算速度方面均有显著提升,凸显了其在多种隐私强度条件下兼顾数据隐私性、实用性并有效降低计算负担的优越能力。

English Abstract

Abstract This study addresses the challenges of privacy, utility, and efficiency in releasing privacy-preserving operational data for AC Optimal Power Flow (AC-OPF) research. Traditional methods, injecting noise into operational data ( i.e. , demand data and dispatch profiles) within the Differential Privacy (DP) framework, often violate physical constraints within the data, leading to unrealistic and infeasible outcomes that diminish data utility. While AC-OPF-solver-based bi-level post-processing optimizations can enforce physical feasibility, the objective divergence between post-processing and AC-OPF leads to discrepancies, compromising data utility. Additionally, their non-convex and adversarial nature makes computation prohibitively expensive, further preventing efficient data release. To overcome these challenges, our research introduces a DP approach that combines strategic noise injection for demand data with the computation of corresponding dispatch profiles, ensuring the privacy-preserving data satisfy AC-OPF’s physical constraints. To accelerate data release, we employ Physics-Informed Neural Networks (PINNs). This ensures solutions’ physical feasibility while enhancing computational efficiency. Furthermore, we incorporate active learning to target the most informative data samples, enhancing PINN training and optimizing efficiency while maintaining solution accuracy. Comprehensive experiments on IEEE test systems reveal our approach’s improved performance and accelerated computation speed over traditional methods, highlighting its efficiency in maintaining data privacy and utility and decreasing computational burden amidst diverse privacy considerations.
S

SunView 深度解读

该研究提出的物理信息神经网络(PINN)求解AC-OPF方法,对阳光电源储能系统(ST系列PCS、PowerTitan)和光伏逆变器(SG系列)的智能调度具有重要价值。通过主动学习加速优化计算,可应用于iSolarCloud平台的实时能量管理系统,在保护用户隐私前提下实现多站点协同优化。该技术能显著提升储能电站参与电网调度的响应速度,降低云端优化计算负担,特别适合大规模分布式光储系统的经济调度场景,为阳光电源智慧能源管理解决方案提供高效隐私保护的数据驱动优化能力。