← 返回
储能系统技术 储能系统 SiC器件 工商业光伏 深度学习 ★ 5.0

基于物理信息神经网络的含非线性频率约束线性交流最优潮流框架的电力系统前瞻调度

Look-ahead Dispatch of Power Systems Based on Linear Alternating Current Optimal Power Flow Framework with Nonlinear Frequency Constraints Using Physics-informed Neural Networks

语言:

中文摘要

可再生能源渗透率的提高削弱了电力系统的频率稳定性。本文提出一种基于线性交流最优潮流框架并计及非线性频率约束的前瞻调度模型以应对该问题。为提升求解效率,引入物理信息神经网络(PINN)准确预测关键频率控制参数。PINN确保学习结果符合真实物理频率动态模型,所预测参数可加速调度模型求解,使其能高效调用商用求解器完成计算。在改进的IEEE 118节点系统上的数值仿真验证了所提模型的有效性与优势。

English Abstract

The increasing penetration of renewable energy re-sources degrades the frequency stability of power systems.The present work addresses this issue by proposing a look-ahead dis-patch model of power systems based on a linear alternating cur-rent optimal power flow framework with nonlinear frequency constraints.Meanwhile,the poor efficiency for solving this for-mulation is addressed by introducing a physics-informed neural network(PINN)to predict key frequency-control parameter val-ues accurately.The PINN ensures that the learned results are applicable to the original physical frequency dynamics model,and applying the predicted parameter values enables the result-ing dispatch model to be solved quickly and efficiently using readily available commercial solvers.The feasibility and advan-tages of the proposed model are demonstrated by the results of numerical computations applied to a modified IEEE 118-bus test system.
S

SunView 深度解读

该基于PINN的前瞻调度技术对阳光电源储能系统和光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可通过PINN快速预测频率响应参数,优化ST系列储能变流器的一次调频策略,提升电网频率支撑能力。对于工商业光伏场景,该线性化OPF框架结合非线性频率约束,可集成到iSolarCloud平台实现多时间尺度优化调度,协调SG逆变器的有功/无功出力。技术核心在于将复杂频率动态模型转化为可快速求解的约束条件,这与阳光电源构网型GFM控制和虚拟同步机VSG技术形成互补,为高比例新能源场景下的系统级优化调度提供高效算法支撑,显著缩短调度计算时间。