← 返回
储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

基于物理信息的积分神经网络用于溶剂法燃烧后CO2捕集过程的动态建模

Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process

作者 Peng Sh · Cheng Zheng · Xiao Wu · Jiong Shen
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 储能系统 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The first work pioneered the physics informed dynamic modelling for the PCC process.
语言:

中文摘要

摘要 溶剂法燃烧后碳捕集(PCC)是实现能源和工业领域大规模脱碳最有前景的技术。然而,该过程的复杂特性和高能耗阻碍了PCC在复杂电力市场中的高效灵活运行。PCC系统的成功运行优化高度依赖于对过程的动态建模,而采用先进的数据驱动方法已成为研究热点。目前广泛使用的数据驱动动态建模方法未将PCC过程的物理机理信息融入模型中,导致模型稳定性不足。物理信息神经网络(PINNs)通过融合数据与物理信息,提供了一种创新的建模方法。然而,其在PCC过程动态建模中的应用仍面临重大挑战。为此,本文基于带外生输入的非线性自回归神经网络(NARX-NN)方法,构建了一种积分神经网络(INN)模型结构,该结构隐式地嵌入了PCC过程的时间动态信息,同时为引入物理信息约束创造了条件。借鉴PINN方法中将物理信息作为模型约束的思想,本文提出了针对PCC过程的平衡点稳定性约束,以确保动态模型在平衡点附近的局部稳定性。结合上述两项创新,本文提出了一种物理信息积分神经网络(PIINN)动态建模方法,用于学习PCC系统在宽工况范围内的非线性动态特性。通过与仿真器生成的数据以及实验室规模PCC实验装置的实际数据进行对比验证,结果表明所提出的PIINN方法在建立PCC系统精确且可靠的动态模型方面具有显著优势。本文首次开创性地将PINN建模方法应用于PCC过程,具有重要的理论与实践意义。

English Abstract

Abstract Solvent-based post-combustion carbon capture (PCC) is the most promising technology for large-scale decarbonization of the energy and industry sectors. However, the complex characteristics and high energy consumption hinder the efficient and flexible operation of PCC in an intricate power market. The successful operation optimization of PCC system is highly dependent on the dynamic modelling of the process, where employing advanced data-driven approaches has gained popularity. The widely used data-driven dynamic modelling methods do not take the PCC process information into the models, which leads to insufficient model stability. Physics informed neural networks (PINNs) present an innovative modelling approach by integrating data with physical information. However, their application in dynamic modelling of PCC process poses significant challenges. To this end, this paper develops an integral neural network (INN) model structure based on the nonlinear auto-regressive neural network with exogenous input (NARX-NN) approach, which embeds the temporal information of the PCC process implicitly in the network, and meanwhile creates conditions for the imposition of physical information constraints. Based on the idea of incorporating physical information into the model as constraints in the PINN method, we propose the equilibrium point stability constraint for the PCC process, which ensures the local stability of the dynamic model around the equilibrium points. Combining these two innovations, a physics informed integral neural network (PIINN) dynamic modelling approach is proposed to learn the nonlinear dynamics of PCC over wide operating range. Validation results against data generated from simulator and laboratory scale PCC process demonstrate the superiority of the proposed PIINN approach in develop an accurate and reliable dynamic model of the PCC system. This paper provides the first work pioneered the PINN modelling for the PCC process.
S

SunView 深度解读

该物理信息神经网络(PIINN)动态建模技术对阳光电源储能系统具有重要应用价值。碳捕集系统的复杂非线性动态特性与PowerTitan储能系统在电力市场中的灵活调度需求高度相似。PIINN方法通过平衡点稳定性约束保证模型可靠性的思路,可借鉴应用于ST系列PCS的宽工况运行建模,提升GFM/GFL控制策略在复杂电网环境下的鲁棒性。积分神经网络结构嵌入时序信息的方式,可优化iSolarCloud平台的预测性维护算法,增强储能系统全生命周期的运行优化能力,支撑能源系统深度脱碳目标。