← 返回
储能系统技术 储能系统 SiC器件 深度学习 强化学习 ★ 5.0

基于软Actor-Critic算法的强化学习控制器改进交错并联DC-DC升压变换器电压调节

Improving Voltage Regulation of Interleaved DC-DC Boost Converter via Soft Actor-Critic Algorithm Based Reinforcement Learning Controller

语言:

中文摘要

本文提出采用基于软Actor-Critic(SAC)算法的强化学习(RL)控制器作为三相交错并联DC-DC升压变换器的唯一主控制器,以提升输出电压的动态性能。阐述了最大熵学习的优势及SAC算法原理,给出了神经网络结构与奖励函数的设计方案。SAC智能体经离线训练后,在工作点处进行稳定性分析,并在物理平台上部署测试。与现有方法的对比表明,该方法显著提升了变换器的电压控制能力,且对参数、参考值及负载变化具有强鲁棒性。

English Abstract

This paper proposes the use of a soft Actor-Critic (SAC) algorithm based reinforcement learning (RL) controller as the only primary controller to improve the dynamic performance of the output voltage of the three-phase interleaved DC-DC boost converter. The advantages of maximum entropy learning are discussed, and the principles of the SAC algorithm are elucidated. Design schemes for neural networks (NNs) and reward functions are provided. The SAC based RL agent is trained offline and the stability analysis is conducted at the operating point. The agent is deployed on a physical platform for testing. Comparative analysis with existing methods demonstrates the effectiveness of this approach in improving voltage control capability in the interleaved converter while exhibiting strong robustness to variations in converter parameters, reference values, and loads.
S

SunView 深度解读

该SAC强化学习控制技术对阳光电源DC-DC变换器产品具有重要应用价值。在ST系列储能变流器中,交错并联Boost拓扑广泛用于电池侧DC-DC升压环节,该方法可显著提升电压动态响应速度和参数鲁棒性,优化储能系统功率爬坡能力。在车载OBC充电机中,面对电池SOC变化和负载突变工况,SAC算法的最大熵学习特性可增强控制器适应性,减少传统PI参数整定工作量。在PowerTitan大型储能系统中,该技术可与SiC器件高频化特性协同,提升DC-DC变换效率和电压稳定性。建议将该算法与阳光现有GFM控制技术融合,探索AI驱动的自适应控制策略,提升产品在复杂工况下的智能化水平。