← 返回
基于忆阻器的人工神经元革新类脑计算
Revolutionizing neuromorphic computing with memristor-based artificial neurons
| 作者 | Yanning Chen1Guobin Zhang2Fang Liu1Bo Wu1Yongfeng Deng1Dawei Gao2Yishu Zhang2 |
| 期刊 | 半导体学报 |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 46 卷 第 6 期 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Yanning Chen Guobin Zhang Fang Liu Bo Wu Yongfeng Deng Dawei Gao Yishu Zhang 半导体学报(英文版) Journal of Semiconductors |
语言:
中文摘要
随着传统冯·诺依曼架构在应对大数据与复杂计算任务时面临瓶颈,受人脑神经网络启发的类脑计算成为有前景的替代方案。易失性忆阻器,特别是莫特忆阻器和扩散型忆阻器,因其可模拟神经元的脉冲发放等动态特性,受到广泛关注,有望构建可重构、自适应的计算系统。近期研究已实现漏电积分-放电、霍奇金-赫胥黎、光电及时间表面神经元模型,显著提升了类脑系统的能效与集成度。本文综述基于易失性忆阻器的人工神经元最新进展,探讨其与人工突触集成的潜力,并指出提升器件可靠性与探索新架构是未来发展的关键挑战。
English Abstract
As traditional von Neumann architectures face limitations in handling the demands of big data and complex computa-tional tasks,neuromorphic computing has emerged as a promising alternative,inspired by the human brain's neural networks.Volatile memristors,particularly Mott and diffusive memristors,have garnered significant attention for their ability to emulate neuronal dynamics,such as spiking and firing patterns,enabling the development of reconfigurable and adaptive computing systems.Recent advancements include the implementation of leaky integrate-and-fire neurons,Hodgkin-Huxley neurons,opto-electronic neurons,and time-surface neurons,all utilizing volatile memristors to achieve efficient,low-power,and highly inte-grated neuromorphic systems.This paper reviews the latest progress in volatile memristor-based artificial neurons,highlight-ing their potential for energy-efficient computing and integration with artificial synapses.We conclude by addressing chal-lenges such as improving memristor reliability and exploring new architectures to advance memristor-based neuromorphic com-puting.
S
SunView 深度解读
忆阻器类脑计算技术对阳光电源智能控制系统具有前瞻性价值。其低功耗、高并行的神经形态计算特性可应用于:1)PowerTitan储能系统的实时功率预测与能量管理,通过硬件神经网络实现毫秒级响应的负荷预测和削峰填谷优化;2)SG系列逆变器的MPPT算法加速,利用忆阻器阵列实现复杂光照条件下的快速最优点追踪;3)iSolarCloud平台的边缘智能诊断,在设备端部署轻量化故障识别模型,降低云端通信依赖。虽然当前器件可靠性尚需突破,但其自适应学习能力为构建下一代自主优化的能源管理芯片提供了技术路径,契合阳光电源智能化、高效化的产品演进方向。