← 返回
一种用于电池组多物理场的高保真在线监测算法
A high-fidelity online monitoring algorithm for multiple physical fields in battery pack
| 作者 | Yi Xiea · Wensai Maa · Disheng Jiang · Wei Lib · Rui Yangc · Satyam Panchal · Michael Fowler · Yangjun Zhang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 398 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Online electric-thermal-power status monitoring for battery packs is tackled. |
语言:
中文摘要
准确估计电池的荷电状态(SOC)、温度分布状态(SOTD)和功率状态(SOP)对于保障现代储能系统(尤其是在电动汽车中)的安全性、效率和寿命至关重要。这些状态之间的交叉耦合动力学特性要求采用先进的建模与估计算法以提升系统性能与可靠性。在本研究中,选取电池组作为研究对象,构建了一种电-热耦合模型。其中,电气模型基于一阶等效电路模型,并扩展以考虑串并联结构关系,从而为热模型提供电气参数;热模型则建立了电池组内部产热与传热过程的详细框架,并将温度反馈至电气模型以校正其参数。随后,针对该模型设计了一种在线SOC-SOTD-SOP联合重构方案:首先,基于电气模型估算电池组中各单体的SOC,并利用SOT进行修正;然后将得到的SOC输入产热模型以计算相关模型参数;接着通过热模型求解各电芯的核心温度,并结合所设计的分形理论方法重构电池组的三维温度场,从而获得每个串并联单元的精确温度分布;最后,利用电-热耦合模型提供的精确SOC、SOT以及电池端电压、电流等参数,实现对SOP的估计。关键状态的实时重构结果表明,所提出的方法在不同工况和温度条件下均表现出良好的准确性与可靠性,SOC的平均绝对误差(AAE)不超过1.52%,三维温度场的平均绝对误差(MAE)低于1.32°C,且SOP估计算法在考虑多种约束条件下的峰值电流预测方面也表现出优异效果。
English Abstract
Abstract Accurate estimation of battery state of charge (SOC), state of temperature distribution (SOTD), and state of power (SOP) is crucial for ensuring the safety, efficiency, and longevity of modern energy storage systems, particularly in electric vehicles. Cross-coupled dynamics between these states require advanced modeling and estimation methods to enhance performance and reliability. In this study, a battery pack was selected as the research object to develop an electro-thermal coupled model. The electrical model is based on the first-order equivalent circuit model, which is extended to incorporate series-parallel relationships, providing electrical parameters for the thermal model. The thermal model establishes a detailed framework for heat generation and heat transfer in the battery pack, providing temperature feedback to the electrical model to correct its parameters. An online SOC-SOTD-SOP joint reconstruction scheme is then designed for the model. First, the SOC of each unit in the pack is estimated based on the electrical model and corrected using SOT. The SOC is then utilized in the heat generation model to calculate model parameters. Subsequently, the thermal model determines the core temperature of each cell. Using the designed fractal theory method, the 3D temperature field of the battery pack is reconstructed to obtain precise temperature distribution for each series-parallel unit. Finally, leveraging accurate SOC, SOT, and parameters provided by the electro-thermal coupled model, including the battery terminal voltage and current, the SOP is estimated. The real-time reconstruction results of key status interpret that the proposed method shows good accuracy and reliability under different operating conditions and temperatures, with AAEs of SOC no more than 1.52 %, MAE of 3D temperature field less than 1.32 °C, and SOP estimation method also shows excellent effect on peak current estimation, considering different constraints.
S
SunView 深度解读
该电池包多物理场在线监测算法对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。电热耦合模型可集成至iSolarCloud平台,实现SOC、温度场和SOP的精准联合估算(SOC误差≤1.52%,温度误差<1.32°C),显著提升储能系统BMS管理精度。三维温度场重建技术可优化液冷/风冷热管理策略,延长电池寿命。SOP动态估算能力可增强充电桩及储能系统的功率调度可靠性,支持预测性维护功能开发,降低热失控风险,契合阳光电源储能安全与智能运维战略方向。