← 返回

数据驱动的数字孪生用于DC/DC降压变换器可靠性评估

Data-Driven Digital Twin for Reliability Assessment of DC/DC Buck Converter

语言:

中文摘要

在商业应用中,DC/DC变换器的运行状态显著影响系统整体性能与长期可靠性。本文提出一种数据驱动的数字孪生方法,用于估计稳态下DC/DC降压变换器关键退化参数。首先,利用离线粒子群优化算法对电路级数字模型进行校准,并通过平均模型验证其稳态响应。随后,在模型中引入电感、电容及MOSFET的退化特性,生成大规模数据集,用于训练和验证随机森林机器学习模型。实验结果表明,该方法回归精度高,决定系数达0.99978,均方根误差低至4.2×10⁻⁶,并在中等功率硬件原型上验证了不同负载及MOSFET导通电阻退化情况下的有效性。该方法可非侵入、高效地识别寄生参数退化与欧姆损耗,提升变换器可靠性评估能力。

English Abstract

In commercial applications, the operation of dc/dc converters significantly impacts overall system performance and long-term reliability. This study introduces a data-driven digital twin (DT) approach for estimating critical degradation parameters of dc/dc buck converter under the steady-state (SS) condition. Initially, a digital model circuit-level ( DM_ C ) is refined against a hardware prototype’s switching model dataset using offline particle swarm optimization (PSO). The optimized digital model’s SS response is then verified with its average model response while varying the duty and load. Subsequently, degradation profiles are imposed on the inductor, capacitor, and MOSFET in the DM_ C . A large dataset is generated from this model, allowing training, validation, and testing of machine learning (ML) models for component health regression tasks. The proposed method employs random forest (RF) ML models, achieving impressive regression results with a squared R value as high as 0.99978 and a root mean square error (RMSE) of 4.2 10^-6 . The method is further validated on a medium power level dc/dc buck prototype with varying load conditions and includes the analysis of MOSFET’son-resistance under degradation conditions. This data-driven DT method shows promise for identifying parasitic degradation and ohmic loss parameters, enhancing converter reliability assessments in a noninvasive, generalized, and computationally efficient manner.
S

SunView 深度解读

该数据驱动数字孪生技术对阳光电源ST系列储能变流器及SG光伏逆变器的DC/DC变换模块具有重要应用价值。通过随机森林模型非侵入式识别电感、电容及MOSFET导通电阻退化(R²=0.99978),可集成至iSolarCloud平台实现预测性维护,提前预警功率器件老化。该方法特别适用于工商业储能系统中Buck/Boost双向变换器的健康管理,通过监测寄生参数漂移评估SiC MOSFET退化程度,优化PowerTitan系统全生命周期可靠性。粒子群优化的电路级模型校准技术可应用于三电平拓扑参数辨识,提升变换器效率曲线精度,支撑智能诊断算法开发,降低运维成本并延长设备寿命。