找到 4 条结果
数据驱动的数字孪生用于DC/DC降压变换器可靠性评估
Data-Driven Digital Twin for Reliability Assessment of DC/DC Buck Converter
Sukanta Roy · Milad Behnamfar · Anjan Debnath · Arif Sarwat · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2024年11月
在商业应用中,DC/DC变换器的运行状态显著影响系统整体性能与长期可靠性。本文提出一种数据驱动的数字孪生方法,用于估计稳态下DC/DC降压变换器关键退化参数。首先,利用离线粒子群优化算法对电路级数字模型进行校准,并通过平均模型验证其稳态响应。随后,在模型中引入电感、电容及MOSFET的退化特性,生成大规模数据集,用于训练和验证随机森林机器学习模型。实验结果表明,该方法回归精度高,决定系数达0.99978,均方根误差低至4.2×10⁻⁶,并在中等功率硬件原型上验证了不同负载及MOSFET导通电阻退...
解读: 该数据驱动数字孪生技术对阳光电源ST系列储能变流器及SG光伏逆变器的DC/DC变换模块具有重要应用价值。通过随机森林模型非侵入式识别电感、电容及MOSFET导通电阻退化(R²=0.99978),可集成至iSolarCloud平台实现预测性维护,提前预警功率器件老化。该方法特别适用于工商业储能系统中B...
基于PCA和堆叠自编码器的混合机器学习框架用于智能电网数据注入攻击检测
Hybrid ML Framework for Data Injection Attack Detection Using PCA and Stacked Autoencoders
Shahid Tufail · Hasan Iqbal · Mohd Tariq · Arif I. Sarwat · IEEE Access · 2025年1月
随着智能电网日益互联,网络攻击特别是数据注入攻击变得更加普遍。此外,模型训练需要准确无偏的高质量数据。我们从现实世界收集的大多数数据稀疏、不完整、不一致和倾斜。为解决这些问题,本研究提出检测此类攻击的框架。使用堆叠自编码器架构生成少数类数据的合成实例。生成的类别解决数据不平衡以增强模型泛化能力并应对多样化攻击场景。评估各种机器学习算法,随机森林RF模型始终达到卓越准确率,范围从99.32%到95.89%。特别是,逻辑回归LR等传统算法对降维表现出敏感性,当主成分从全部降至10时经历16.96%准...
解读: 该数据注入攻击检测技术对阳光电源智能电网安全至关重要。阳光iSolarCloud平台和ST储能系统接入电网SCADA系统,面临虚假数据注入攻击威胁。该研究的堆叠自编码器和随机森林混合方法可集成到阳光网络安全防护体系,检测异常数据和攻击行为。在电网侧储能场景下,数据注入攻击可能导致储能系统误动作,影响...
基于机器学习驱动的多目标方法优化CPV系统针翅片散热器设计
Optimisation of pin-fin heat sink design for CPV systems using machine learning-driven multi-objective approaches
Javad Mohammadpour · Danah Ruth Cahanap · Danish Ansari · Christophe Duwig 等5人 · Energy Conversion and Management · 2025年1月 · Vol.340
摘要:聚光光伏(CPV)系统因其高效率和紧凑的设计,能够支持绿色氢气生产,并有助于实现联合国可持续发展目标7(经济适用的清洁能源)。然而,若热管理不当,其性能和使用寿命会受到显著影响。为应对这一挑战,本研究提出了一种数据驱动的框架,可在提升CPV系统热性能优化效果的同时,降低对计算密集型仿真的依赖。本文评估了一种新型变高度针翅片散热器,旨在最小化最高温升、温度不均匀性以及压降。研究评估了五种基于树结构的机器学习(ML)模型,包括决策树、随机森林、梯度提升、XGBoost和CatBoost,其中C...
解读: 该CPV热管理优化技术对阳光电源高功率密度产品具有重要借鉴价值。研究中采用的机器学习驱动多目标优化方法可应用于ST系列储能变流器和SG系列大功率逆变器的散热设计优化,通过CatBoost等算法替代传统CFD仿真,显著降低热设计迭代成本。变高度翅片散热器设计理念可用于PowerTitan储能系统功率模...
基于第一性原理与机器学习方法研究双钙钛矿Li2CuBiX6
X = Br, I)的光学与电子性质及其在光伏中的应用
Taoufik Chargui · Ramzi El Idrissi · Abdelkabir Bacha · Fatima Lmaia · Solar Energy · 2025年1月 · Vol.299
摘要:开发高效且稳定的无铅材料对于推动下一代光伏技术的发展至关重要。在本研究中,我们结合第一性原理计算与机器学习技术,对Li2CuBiX6(X = Br, I)双钙钛矿作为有前景的光吸收材料进行了系统研究。密度泛函理论(DFT)结果表明,该材料具有适合太阳能转换的间接带隙,其中溴化物体系(Br)为1.7 eV,碘化物体系(I)为1.3 eV。关键光学性质,包括吸收系数、反射率、折射率和介电函数,均证实其具备优异的光捕获能力。采用SCAPS-1D模拟构建了FTO/ETL/Li2CuBiX6/HTL...
解读: 该无铅双钙钛矿材料研究对阳光电源光伏逆变器产品线具有前瞻价值。Li2CuBiX6材料展现的27-31%理论转换效率及宽光谱吸收特性,可为SG系列逆变器的MPPT算法优化提供新材料参数基础。研究中机器学习预测模型(XGBoost R²=99.87%)与DFT计算结合的方法,可借鉴应用于iSolarCl...