← 返回
基于第一性原理与机器学习方法研究双钙钛矿Li2CuBiX6
X = Br, I)的光学与电子性质及其在光伏中的应用
| 作者 | Taoufik Chargui · Ramzi El Idrissi · Abdelkabir Bacha · Fatima Lmaia |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Li2CuBiX6 (X = Br I) shows ideal band gaps (1.7/1.3 eV) and strong absorption for solar applications. |
语言:
中文摘要
摘要:开发高效且稳定的无铅材料对于推动下一代光伏技术的发展至关重要。在本研究中,我们结合第一性原理计算与机器学习技术,对Li2CuBiX6(X = Br, I)双钙钛矿作为有前景的光吸收材料进行了系统研究。密度泛函理论(DFT)结果表明,该材料具有适合太阳能转换的间接带隙,其中溴化物体系(Br)为1.7 eV,碘化物体系(I)为1.3 eV。关键光学性质,包括吸收系数、反射率、折射率和介电函数,均证实其具备优异的光捕获能力。采用SCAPS-1D模拟构建了FTO/ETL/Li2CuBiX6/HTL/Mo结构的太阳能电池模型,并评估了多种电子传输层(ETL)和空穴传输层(HTL)组合。结果表明,SnS2和Cu2O分别为最优的ETL和HTL,可实现高达27.24%(Li2CuBiBr6)和31.80%(Li2CuBiI6)的能量转换效率。我们还系统分析了界面缺陷、掺杂浓度、吸收层厚度以及温度对器件性能的影响。为了预测效率变化趋势并优化器件构型,采用了多种机器学习模型(XGBoost、随机森林、SVR)进行建模分析。其中XGBoost模型表现出最高预测精度,决定系数R²达到99.87%,均方根误差(RMSE)极低。本研究凸显了Li2CuBiX6作为高效无铅太阳能吸收材料的巨大潜力,并展示了将第一性原理模拟与机器学习相结合在光伏器件设计中的重要价值。
English Abstract
Abstract The development of efficient and stable lead-free materials is essential for advancing next-generation photovoltaic technologies. In this study, we investigate Li 2 CuBiX 6 (X = Br, I) double perovskites as promising absorber materials, using first-principles calculations and machine learning techniques. Density functional theory (DFT) results show indirect band gaps of 1.7 eV (Br) and 1.3 eV (I), suitable for solar energy conversion. Key optical properties, including absorption coefficient, reflectivity, refractive index and dielectric function, confirm their strong ability to capture light. A solar cell architecture FTO/ETL/Li 2 CuBiX 6 /HTL/Mo was modeled in SCAPS-1D, evaluating various electron and hole transport layers. SnS 2 and Cu 2 O were identified as the best ETL and HTL, respectively, producing high energy conversion efficiencies of 27.24 % (Li 2 CuBiBr 6 ) and 31.80 % (Li 2 CuBiI 6 ). We also analyzed the effects of interfacial defects, doping concentration, absorber thickness and temperature on device performance. To predict efficiency trends and optimize configurations, we applied machine learning models (XGBoost, Random Forest, SVR). XGBoost achieved the highest accuracy, with R 2 = 99.87 % and a low RMSE. This work highlights the potential of Li 2 CuBiX 6 as an efficient, lead-free solar absorber and demonstrates the value of combining first-principles simulations with machine learning for photovoltaic design.
S
SunView 深度解读
该无铅双钙钛矿材料研究对阳光电源光伏逆变器产品线具有前瞻价值。Li2CuBiX6材料展现的27-31%理论转换效率及宽光谱吸收特性,可为SG系列逆变器的MPPT算法优化提供新材料参数基础。研究中机器学习预测模型(XGBoost R²=99.87%)与DFT计算结合的方法,可借鉴应用于iSolarCloud平台的组件性能预测与衰减分析。材料的温度稳定性研究对逆变器热管理设计有参考意义,特别是1500V高压系统在极端环境下的效率优化。该技术路线为储能系统ST系列PCS的直流侧组件选型提供创新方向。