← 返回

基于相变材料的工业级规模热能储存装置的模型预测控制

Model predictive control of a phase-change-material thermal energy storage device at industrial relevant scale

语言:

中文摘要

摘要 热能储存(TES)系统广泛应用于发电、工业和住宅领域,通常与聚光太阳能发电系统、热泵或专用换热器结合使用,以回收工业过程中的废热。这类系统具有高可靠性、缓慢退化以及投资和维护成本低的优点。在现有技术中,采用相变材料(PCM)的潜热储存系统具有高紧凑性和小温度波动的优势。然而,目前对PCM装置运行特性的认识仍然有限,尤其是在其动态响应以及用于调节交换热功率的控制系统性能方面。本文分析了一种壳管式PCM-TES装置的动态响应特性,该装置在实验室环境下运行,但具备工业级规模的储热容量(180 kWh),利用水/冰的潜热提供冷却功率。通过实验测试观察了该装置在不同运行条件和不同荷电状态下的性能,结果表明其在瞬态过程中表现出强烈的非线性行为,这使得控制器的设计尤为困难。首先,开展了详细的系统辨识工作,引入了新的无量纲参数来表征TES平台的热响应特性。随后建立了一个二阶传递函数模型用于模拟PCM-TES装置,并以此支持两种控制系统的开发:第一种基于传统的PID控制,第二种则采用模型预测控制(MPC)方法。这些控制器分别在软件在环(software-in-the-loop)环境中进行了测试和比较,之后被安装到实际的PCM-TES装置上进行验证。实验结果表明:(i)传统的线性控制方法在面对系统非线性时可能失效,导致系统不稳定;(ii)先进的控制技术如MPC能够有效补偿系统的非线性特性,实现对PCM-TES装置的成功调控。

English Abstract

Abstract Thermal energy storage (TES) systems are widely used in the power generation, industrial and residential sectors, frequently coupled with concentrated solar power systems, heat pumps or dedicated heat exchangers to recover waste heat from industrial processes. They are characterized by high reliability, slow degradation and low costs, in terms of both investment and maintenance. Among the available technologies, latent heat storage systems employing phase change materials (PCMs) have the advantage of high compactness and small temperature variations. However, knowledge of operation of PCM devices is still limited, in particular regarding their dynamic response and performance of control systems devoted at regulating the thermal power exchanged. This article analyses the dynamic response of a shell-and-tube PCM-TES device, operated in laboratory but featuring industrial scale storage capacity (180 kWh) which provides cooling power exploiting the latent heat of water/ice. Experimental tests were carried out to observe its performance in various operating conditions and different states of charge, highlighting strongly non-linear behavior during transients, making the design of the controllers particularly challenging. First, a detailed system identification process was carried out, introducing new non-dimensional parameters to characterize the TES platform thermal response. Then a second order transfer function was developed to simulate the PCM-TES device and used to support the development of two control systems: the first one based on a conventional PID, and the second one developed according to a model predictive control (MPC) approach. These controllers were separately tested and compared in a software-in-the-loop setup and later installed on the actual PCM-TES device, demonstrating that (i) conventional linear control approaches might be unsuccessful with system non-linearities, causing instabilities, and that (ii) advanced control techniques, such as MPC, can compensate for system non-linearities and achieve successful regulation of the PCM-TES device.
S

SunView 深度解读

该相变储能MPC控制技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要参考价值。研究揭示PCM储能系统的强非线性特性与传统PID控制局限性,验证了模型预测控制在复杂热管理场景的优越性。可启发阳光电源在液冷储能系统、工商业储能温控及iSolarCloud平台集成先进MPC算法,提升储能系统动态响应速度与温度调控精度,增强电网侧储能与户用储能产品在高频充放电工况下的可靠性与能效表现。