← 返回
储能系统技术 储能系统 户用光伏 工商业光伏 ★ 5.0

负温度系数热敏电阻研究进展:综述

Research progress on negative temperature coefficient thermistors: review

作者 Zhenlin Song · Zengji Chen
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统 户用光伏 工商业光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 NTC热敏电阻 材料体系 制备工艺 性能优化 微型化
语言:

中文摘要

全球负温度系数(NTC)热敏电阻市场每年生产超过四十亿只产品,广泛应用于工业制造、航空航天和家用电器等领域。随着新能源汽车和储能系统的日益普及,电池系统对可靠温度控制的需求显著增长。NTC热敏电阻以其高精度、小型化和快速响应等优点,在维持电池最佳工作温度方面发挥着关键作用,有助于延长电池寿命并提高系统可靠性。在过去两个世纪中,人们已采用多种材料开发NTC热敏电阻。然而,早期的NTC热敏电阻常存在测温范围窄、稳定性差等问题。因此,有必要系统回顾不同材料、掺杂元素及制备工艺对NTC热敏电阻电学性能的影响,以推动其进一步的研究与应用。本文全面综述了NTC热敏电阻的特性、发展历史、性能指标及温度传感机制,并总结了各类NTC热敏电阻当前的研究现状与未来发展方向。

English Abstract

The global negative temperature coefficient (NTC) thermistor market produces over four billion units annually, with applications spanning industrial manufacturing, aerospace, and household appliances. With the increasing adoption of new energy vehicles and energy storage systems, the demand for reliable temperature control in battery systems has grown significantly. NTC thermistors, renowned for their precision, miniaturization, and rapid response, play a crucial role in maintaining optimal battery temperatures, which contributes to prolonged battery life and enhanced system reliability. Over the past two centuries, various materials have been used to develop NTC thermistors. However, early NTC thermistors often suffered from issues such as a narrow temperature measurement range and poor stability. Therefore, it is necessary to review the effects of different materials, dopants, and manufacturing processes on the electrical properties of NTC thermistors to promote further research and applications. This paper provides a comprehensive review of the characteristics, development history, performance index, and temperature-sensing mechanisms of NTC thermistors. Additionally, it summarizes the current research status and future directions for various types of NTC thermistors.
S

SunView 深度解读

该NTC热敏电阻技术对阳光电源储能系统(PowerTitan/ST系列PCS)和充电桩产品具有关键应用价值。在电池热管理方面,高精度NTC可提升BMS温度监测准确性,优化PowerTitan储能系统的热失控预警能力;在SiC/GaN功率器件应用中,宽温域、高稳定性NTC有助于三电平拓扑的结温监测;对于EV充电桩,快速响应型NTC可改善大功率充电时的动态热管理。建议关注新型掺杂材料对-40°C至85°C工况的适应性,以及微型化封装技术在逆变器IGBT/SiC模块中的集成潜力,支撑iSolarCloud平台的预测性维护算法开发。