← 返回
PowerFlowMultiNet:用于不平衡三相配电系统的多图神经网络
PowerFlowMultiNet: Multigraph Neural Networks for Unbalanced Three-Phase Distribution Systems
| 作者 | Salah Ghamizi · Jun Cao · Aoxiang Ma · Pedro Rodriguez |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 不平衡三相潮流 图神经网络 PowerFlowMultiNet 配电网 计算速度 |
语言:
中文摘要
高效求解配电网中的三相不平衡潮流对于电网分析和仿真至关重要。迫切需要能够处理大规模不平衡电网的可扩展算法,以提供准确、快速的解决方案。为此,深度学习技术,尤其是图神经网络(GNN)应运而生。然而,现有文献主要集中在平衡网络,在支持三相不平衡电网方面存在重大空白。本文介绍了 PowerFlowMultiNet,这是一种专门为三相不平衡电网设计的新型多图 GNN 框架。该方法在多图表示中分别对每一相进行建模,有效捕捉了不平衡电网的固有不对称性。引入了一种利用消息传递的图嵌入机制,以捕捉电力系统网络内的空间依赖性。在准确性和计算速度方面,PowerFlowMultiNet 优于传统方法和其他深度学习方法。严格测试表明,与基于模型的方法相比,该方法在大型电力网络中的误差率显著降低,计算速度显著提高。
English Abstract
Efficiently solving unbalanced three-phase power flow in distribution grids is pivotal for grid analysis and simulation. There is a pressing need for scalable algorithms capable of handling large-scale unbalanced power grids that can provide accurate and fast solutions. To address this, deep learning techniques, especially Graph Neural Networks (GNNs), have emerged. However, existing literature primarily focuses on balanced networks, leaving a critical gap in supporting unbalanced three-phase power grids. This letter introduces PowerFlowMultiNet, a novel multigraph GNN framework explicitly designed for unbalanced three-phase power grids. The proposed approach models each phase separately in a multigraph representation, effectively capturing the inherent asymmetry in unbalanced grids. A graph embedding mechanism utilizing message passing is introduced to capture spatial dependencies within the power system network. PowerFlowMultiNet outperforms traditional methods and other deep learning approaches in terms of accuracy and computational speed. Rigorous testing reveals significantly lower error rates and a notable increase in computational speed for large power networks compared to model-based methods.
S
SunView 深度解读
该多图神经网络潮流计算技术对阳光电源配电侧产品具有重要应用价值。在PowerTitan大型储能系统并网场景中,可实时分析三相不平衡工况下的潮流分布,优化ST系列储能变流器的三相功率调度策略,提升不平衡补偿能力。对于分布式光伏集群(SG逆变器阵列),该算法可快速评估不对称故障下的系统状态,为iSolarCloud平台提供毫秒级仿真能力,支持预测性维护与动态无功补偿。在充电桩微网应用中,可实现多充电桩三相负荷的智能均衡调度。相比传统迭代算法,神经网络推理速度提升显著,适配边缘控制器实时决策需求,为构网型GFM控制提供快速潮流预测支撑。