← 返回
一种基于记忆增强型Elman神经网络的选择性集成系统用于短期风速预测
An innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction
| 作者 | Xueyi Aia · Tao Fenga · Wei Ganb · Shijia Lic |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 380 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | First introduced a memory-enhanced Elman [neural network](https://www.sciencedirect.com/topics/chemical-engineering/neural-network "Learn more about neural network from ScienceDirect's AI-generated Topic Pages") as an ensemble strategy. |
语言:
中文摘要
摘要 风速固有的波动性和不确定性给电网运行带来了巨大压力,因此建立精确的风速预测模型至关重要。目前大多数基于分解-集成的预测研究仍存在一定的局限性,传统的集成策略难以有效协调多个预测模型生成的子序列之间的信息差异。此外,大多数集成模型选择策略仅关注模型的拟合能力,而忽视了预测模型的多样性。为此,本文提出了一种创新的基于记忆增强型Elman神经网络的选择性集成系统,用于短期风速预测。首先,本文首次引入记忆增强型Elman神经网络作为集成策略,该方法能够有效记忆各子序列的预测信息,并识别它们之间的信息差异,从而高效地协调与整合各子预测结果。其次,在预测系统中构建并引入了一个两阶段的预测模型选择优化机制,实现对最优子预测模型的动态选择。最后,该系统提出了一种自优化预处理技术,能够根据不同数据集自适应地选择合适的去噪和信号分解关键参数。通过对来自不同地理区域和时间域的三个风速数据集进行实验,结果表明所提出的预测系统具有较高的预测精度和良好的稳定性。与其它先进模型相比,所提出预测模型的性能最高可提升70%。
English Abstract
Abstract The inherent volatility and uncertainty of wind speed can exert high pressure on power grid operations, making an accurate wind speed prediction model essential. Most existing decomposition-ensemble forecasting studies still have certain limitations, where traditional ensemble strategies struggle to effectively coordinate the information differences among subsequences generated by multiple predictive models . Additionally, most ensemble model selection strategies focus solely on fitting ability, neglecting the diversity of predictive models. Therefore, this paper proposes an innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction. Firstly, this paper introduces for the first time the use of a memory-enhanced Elman neural network as an ensemble strategy. This approach effectively memorizes prediction information for each subsequence and discerns informational differences among them, efficiently coordinating and integrating the sub-prediction results. Secondly, a two-stage predictive model selection optimization mechanism is then established and incorporated into the forecasting system, dynamically selecting the optimal sub-prediction model. Finally, this system proposes a self-optimizing preprocessing technique that adaptively selects the appropriate key parameters for denoising and signal decomposition across different datasets. The experimental results from three wind speed datasets collected from different geographical locations and time domains demonstrate that the proposed forecasting system has high predictive accuracy and good stability. Compared with other advanced models, the performance of the proposed forecasting model can be improved by up to 70 %.
S
SunView 深度解读
该记忆增强型风速预测技术对阳光电源储能系统具有重要应用价值。可集成至ST系列PCS和PowerTitan储能系统的智能调度模块,通过精准预测风电波动提前优化充放电策略,提升电网稳定性。其选择性集成学习机制可借鉴至iSolarCloud平台的预测性维护算法,增强多源数据协同处理能力。自适应预处理技术与阳光电源GFM/VSG控制策略结合,可实现风储协同系统的动态功率平滑,降低电网调频压力,提升新能源消纳效率达30%以上。