← 返回
基于图特征与深度学习的锂离子电池退化轨迹早期感知
Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning
| 作者 | Haichuan Zhao · Jinhao Meng · Qiao Peng |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Graphical features are proposed for early degradation trajectory perception. |
语言:
中文摘要
摘要 在电池储能系统(BESS)的全生命周期管理中,早期捕捉锂离子电池(LIB)的退化路径至关重要,然而现有研究主要集中在短期电池健康状态(如健康状态,SOH)诊断。本研究提出一种创新性概念,旨在仅利用少量初始循环数据即可感知锂离子电池的退化轨迹,从而为BESS复杂化的运行与维护策略预留充足的调整空间。本文提出一种新颖的深度学习框架,通过构建基于电池早期使用数据的图特征来获取容量退化轨迹。为了捕获更丰富的容量衰减特征,该框架通过生成增量容量(IC)曲线和容量差分曲线对电压-容量数据进行增强,并将这些曲线拼接以构建图特征。进一步设计了一种多通道依赖神经网络(MCDNet),采用大尺寸卷积核和STar Aggregate-Redistribute(STAR)特征融合方法,从图特征中提取退化信息并预测关键轨迹节点,在保证各通道独立性优势的同时促进通道间信息交互。随后,利用分段三次Hermite插值多项式(PCHIP)通过关键节点重构完整的容量退化轨迹。所提出的模型在多种先进图像分类算法对比下进行了验证,并在不同的电池寿命场景、有限循环数据以及不同电压区间条件下测试了其性能。在大多数情况下,所提方法获得的容量退化轨迹平均绝对误差小于60个循环周期。
English Abstract
Abstract Capturing the degradation path of lithium-ion battery (LIB) at the early stage is critical to managing the whole lifespan of the battery energy storage systems (BESS), while recent research mainly focuses on the short-term battery health diagnosis such as state of health (SOH). This work investigates an innovative concept to perceive the degradation trajectory of the LIBs with few initial cycles, where sufficient tuning space can be left for the sophisticated operation and maintenance of BESS. A novel deep learning framework is proposed to obtain capacity degradation trajectory using graphical features constructed with the early battery usage data. To capture richer capacity decay features, the framework enhances the voltage-capacity data by generating incremental capacity (IC) and capacity difference curves, which are then spliced to construct graphical features. A multi-channel dependent neural network (MCDNet) is developed to extract degradation information from graphical features and predict key trajectory knots using a large-size convolutional kernel and STar Aggregate-Redistribute (STAR) feature fusion method to ensure the advantage of channel independence while facilitating the interaction of channel information. The capacity degradation trajectory will be reconstructed with the key knots using the piecewise cubic Hermite interpolating polynomial (PCHIP). The proposed model is validated against advanced image classification algorithms and its performance is tested under different battery lifetime scenarios, limited cycling data, and different voltage segments. In most cases, the proposed method obtains the capacity degradation trajectories with the mean absolute error of less than 60 cycles.
S
SunView 深度解读
该早期电池退化轨迹预测技术对阳光电源ST系列储能系统及PowerTitan产品具有重要价值。通过少量初始循环数据的图形化特征和深度学习,可在电池全生命周期早期预判容量衰减路径,为储能系统预测性维护提供60个循环内的精准预警。该技术可集成至iSolarCloud平台,结合增量容量曲线分析,优化BMS健康管理策略,延长储能电站运营寿命,降低运维成本,提升ST系列PCS的智能化水平和系统整体经济性。