← 返回
基于矩阵补全的部分可观测条件下配电网络拓扑与参数学习
Learning to Learn Topology and Parameters of Distribution Grid with Matrix Completion under Partial Observability
| 作者 | Garima Prashal · Parasuraman Sumathi · Narayana Prasad Padhy |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 户用光伏 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 主动配电网 拓扑参数估计 图卷积网络 潮流方程 拓扑结构学习 |
语言:
中文摘要
针对量测受限导致的配电网拓扑与参数信息不完整问题,提出一种融合图卷积网络与物理约束的拓扑增强型模型(TE-GCN)。通过引入节点间物理连接关系并嵌入潮流方程作为节点特征,提升模型可解释性与物理一致性。对于无电压量测的隐藏节点,采用神经网络结合潮流约束补全电压矩阵,并利用GCN估计拓扑结构。该方法将原始-对偶分裂算法展开为神经网络,以变分自编码器替代拓扑投影,优化网络结构学习。在四个含真实负荷数据的IEEE标准系统上的实验验证了其有效性。
English Abstract
The incomplete and inaccurate information on topology parameters resulting from limited measurement availability affects state monitoring, control, and monitoring of active distribution networks. These challenges have been addressed by formulating a Graph Convolutional Networks with Topological Enhancements (TE-GCN) for topology and parameters estimation. The interpretability of GCN is enhanced by incorporating physical connections between nodes and embedding the power flow (PF) equations as node features. It allows GCNs to learn the interdependence of nodes from data, enabling accurate estimations while maintaining physics of the system. In cases where nodes without voltage measurements are considered hidden nodes, a neural network is employed to recover the voltage matrix completion model, augmented with PF constraints. The PF equations are then estimated using GCN while ensuring physics consistency. To learn the topological structure from the acquired node measurements, a mapping is proposed that learns from node data to the structure. This method initially unrolls an iterative Primal-Dual Splitting (PDS) algorithm into a neural network structure. Subsequently, it replaces the topology proximal projection with a Variational Auto Encoder (VAE), thereby enhancing the estimated network topology with improved topological properties. The effectiveness of the proposed model is demonstrated on four IEEE bus systems with actual household demands.
S
SunView 深度解读
该配电网拓扑与参数学习技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。在分布式光伏与储能大规模接入场景下,配电网拓扑信息往往不完整且动态变化,该研究提出的TE-GCN模型可基于有限量测数据重构网络拓扑并估计线路参数,为ST系列储能变流器的并网控制策略优化提供准确电网模型。其矩阵补全方法可应用于光储电站的局部可观测性问题,提升iSolarCloud平台的故障诊断与预测性维护能力。融合物理约束的深度学习框架为阳光电源开发具备电网感知能力的智能逆变器提供了技术路径,增强构网型GFM控制在弱电网环境下的适应性。