找到 1 条结果
基于矩阵补全的部分可观测条件下配电网络拓扑与参数学习
Learning to Learn Topology and Parameters of Distribution Grid with Matrix Completion under Partial Observability
Garima Prashal · Parasuraman Sumathi · Narayana Prasad Padhy · IEEE Transactions on Power Systems · 2025年5月
针对量测受限导致的配电网拓扑与参数信息不完整问题,提出一种融合图卷积网络与物理约束的拓扑增强型模型(TE-GCN)。通过引入节点间物理连接关系并嵌入潮流方程作为节点特征,提升模型可解释性与物理一致性。对于无电压量测的隐藏节点,采用神经网络结合潮流约束补全电压矩阵,并利用GCN估计拓扑结构。该方法将原始-对偶分裂算法展开为神经网络,以变分自编码器替代拓扑投影,优化网络结构学习。在四个含真实负荷数据的IEEE标准系统上的实验验证了其有效性。
解读: 该配电网拓扑与参数学习技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。在分布式光伏与储能大规模接入场景下,配电网拓扑信息往往不完整且动态变化,该研究提出的TE-GCN模型可基于有限量测数据重构网络拓扑并估计线路参数,为ST系列储能变流器的并网控制策略优...