← 返回
储能系统技术 储能系统 GaN器件 机器学习 深度学习 ★ 5.0

网络攻击预测:从传统机器学习到生成式人工智能

Cyber Attack Prediction: From Traditional Machine Learning to Generative Artificial Intelligence

作者 Shilpa Ankalaki · Aparna Rajesh Atmakuri · M. Pallavi · Geetabai S Hukkeri · Tony Jan · Ganesh R. Naik
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 GaN器件 机器学习 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 网络安全 人工智能 机器学习 可解释人工智能 生成式人工智能
语言:

中文摘要

网络威胁日益复杂对个人、组织和国家构成重大风险。网络犯罪包括黑客攻击和数据泄露,具有严重经济和社会后果。传统安全解决方案难以应对不断演变的威胁态势。人工智能AI提供强大技术来应对这些挑战。本文探讨AI方法包括机器学习ML、深度学习DL、自然语言处理NLP、可解释AI和生成式AI在解决各种网络安全问题中的应用。关键贡献包括:1)ML和DL方法对比研究,评估准确性、适用性和各种网络安全挑战的适用性;2)可解释AI方法研究,增强AI安全解决方案的透明度和可解释性;3)生成式AI和NLP新兴趋势探索,检验通过威胁情报生成和攻击模拟等先进技术模拟和缓解网络威胁的潜力;4)GenAI在网络安全中的应用和产品。

English Abstract

The escalating sophistication of cyber threats poses significant risks to individuals, organizations, and nations. Cybercrime, encompassing activities like hacking and data breaches, has severe economic and societal consequences. In today’s interconnected world, robust cybersecurity measures are paramount to mitigate these risks and protect sensitive information. However, traditional security solutions struggle to keep pace with the evolving threat landscape. Artificial Intelligence (AI) offers a powerful arsenal of techniques to address these challenges. This paper explores the application of AI methods, including Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), Explainable AI (XAI), and Generative AI, in solving various cybersecurity problems. This paper presents a comprehensive analysis of AI techniques for enhancing cybersecurity. Key contributions include: 1) comparative study of ML and DL methods: Evaluating their accuracy, applicability, and suitability for various cybersecurity challenges; 2) investigation into XAI approaches: Enhancing the transparency and interpretability of AI-powered security solutions, particularly in anomaly detection; 3) exploration of emerging trends in Generative AI (Gen-AI) and NLP: Examining their potential to simulate and mitigate cyber threats through advanced techniques like threat intelligence generation and attack simulations; 4) application of GenAI in cybersecurity and real-world products of GenAI for cyber security. This research aims to advance the state-of-the-art in AI-driven cybersecurity by providing insights into effective and reliable solutions for mitigating cyber risks and improving the overall security posture.
S

SunView 深度解读

该网络安全AI技术对阳光电源iSolarCloud平台和智能设备安全防护有重要参考价值。阳光云平台连接海量光伏储能设备,面临网络攻击威胁。生成式AI和机器学习方法可应用于阳光平台的入侵检测和异常行为识别。可解释AI技术可提升阳光安全系统的透明度,辅助安全运维决策。威胁情报生成和攻击模拟方法对阳光安全测试和漏洞评估有价值。该综述为阳光构建AI驱动的主动防御体系提供全面技术路线参考。