← 返回
基于人工智能和机器学习的安全运营中心强化技术综述
Empowering Security Operation Center With Artificial Intelligence and Machine Learning
| 作者 | Mohamad Khayat · Ezedin Barka · Mohamed Adel Serhani · Farag Sallabi · Khaled Shuaib · Heba M. Khater |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 网络安全运营中心 网络威胁 人工智能 机器学习 架构模型 |
语言:
中文摘要
安全运营中心SOC是组织网络安全的核心,但面临威胁复杂度提升的挑战。本文通过系统文献综述,详细探讨AI和ML技术如何革新SOC,增强威胁识别、响应能力以及风险预测。研究涵盖自动化事件响应、行为分析、神经网络和深度学习等多种方法,提出集成AI和ML的SOC参考架构模型。该模型为实施提供结构化框架,详述不同SOC组件及其交互。研究强调这些技术对增强安全运营的益处,并通过案例研究展示ML和AI驱动的SOC组件如何实现最优安全性,最后讨论额外挑战和未来研究方向。
English Abstract
Organizational cybersecurity relies heavily on security operation centers (SOCs) to protect businesses and institutions from emerging cyber threats. In recent years, the complexity and sophistication of cyber threats have increased, pushing SOCs to their limits. As a result, SOCs struggle to address the evolving threat landscape due to their reliance on isolation technologies and reactive strategies. However, advanced technologies, such as artificial intelligence (AI) and machine learning (ML), have the potential to revolutionize SOCs by enhancing threat identification and response capabilities, as well as predicting and preempting risks. To address these challenges and highlight the full potential of SOC, this study provides a detailed overview through a comprehensive literature review that identifies gaps in existing research and examines the latest technologies used in the SOC environment to help address different operational and technical challenges and bring out their capabilities. Various methods, ranging from automated incident response and behavioral analytics to neural networks and deep learning, have been classified and compared. In addition, an in-depth reference architectural model, which is a blueprint for SOC integrating AI and ML into SOCs, is introduced. The proposed model provides a structured framework for implementation and offers insights into different SOC components and their interactions. Moreover, this systematic review emphasizes the benefits of these technologies for enhancing security operations. Finally, a case study is presented to describe the function of ML- and AI-powered SOC components to achieve optimum security. This paper concludes by discussing additional challenges and future research directions that may help advance the cybersecurity sector and provide insights into improving SOCs.
S
SunView 深度解读
该AI安全运营技术对阳光电源智慧能源平台的网络安全至关重要。阳光iSolarCloud云平台管理全球数百GW光伏储能资产,面临日益严峻的网络安全威胁。该研究的AI驱动SOC架构可集成到阳光云平台安全体系,实现实时威胁检测、自动化响应和预测性防御。结合阳光储能变流器的边缘计算能力和设备级安全防护,该技术可构建从云端到边缘的纵深防御体系,保护能源物联网系统免受网络攻击,确保电网级储能系统安全稳定运行。