← 返回
假新闻、宣传和虚假信息的系统综述:基于机器学习的作者、内容和社会影响分析
Systematic Review of Fake News, Propaganda, and Disinformation
| 作者 | Darius Plikynas · Ieva Rizgelienė · Gražina Korvel |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 机器学习 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 虚假新闻 社交媒体 机器学习 深度学习 检测研究 |
语言:
中文摘要
近年来,假新闻、宣传和虚假信息FNPD在在线社交网络上全球爆发。在信息战和生成式AI能力背景下,FNPD激增,成为影响人们社会认同、态度、观点甚至行为的强大有效工具。恶意社交媒体账户和有组织的网络水军和机器人针对国家、社会、社会群体、政治活动和个人。导致阴谋论、回声室、过滤气泡等碎片化和边缘化过程使社会在连贯政治、治理和信任合作社交网络方面极化、激进化和分裂。本系统综述旨在探索使用机器和深度学习有效检测OSN中FNPD的进展。呈现PRISMA综述结果涵盖三个分析领域:传播者、文本内容、社会影响。该系统研究框架整合三个研究领域的元分析,提供更广泛研究领域概览并揭示这些领域之间的重要关系。
English Abstract
In recent years, the world has witnessed a global outbreak of fake news, propaganda and disinformation (FNPD) flows on online social networks (OSN). In the context of information warfare and the capabilities of generative AI, FNPDs have proliferated. They have become a powerful and quite effective tool for influencing people’s social identities, attitudes, opinions and even behavior. Ad hoc malicious social media accounts and organized networks of trolls and bots target countries, societies, social groups, political campaigns and individuals. As a result, conspiracy theories, echo chambers, filter bubbles and other processes of fragmentation and marginalization are polarizing, radicalizing, and disintegrating society in terms of coherent politics, governance, and social networks of trust and cooperation. This systematic review aims to explore advances in using machine and deep learning to detect FNPD in OSNs effectively. We present the results of a combined PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) review in three analysis domains: 1) propagators (authors, trolls, and bots), 2) textual content, 3) social impact. This systemic research framework integrates meta-analyses of three research domains, providing an overview of the wider research field and revealing important relationships between these research domains. It not only addresses the most promising ML/DL research methodologies and hybrid approaches in each domain, but also provides perspectives and insights on future research directions.
S
SunView 深度解读
该假新闻检测技术对阳光电源品牌声誉管理具有应用价值。阳光作为全球领先的新能源企业,在社交媒体和行业论坛面临虚假信息和恶意攻击风险。该研究的机器学习检测方法可集成到阳光企业传播监控系统,实时识别和追踪针对公司的虚假信息。结合阳光iSolarCloud平台的大数据分析能力,该技术可构建舆情监控体系,自动识别社交媒体上的误导性内容、恶意评论和网络水军攻击。通过早期预警和快速响应,保护企业品牌形象,维护投资者和客户信心,支持公司在国际市场的健康发展。