← 返回

基于AI驱动的低能耗物联网协议优化用于可扩展高效智慧医疗系统

AI-Driven Optimization of Low-Energy IoT Protocols for Scalable and Efficient Smart Healthcare Systems

作者 Salma Rattal · Abdelmajid Badri · Mohamed Moughit · El Miloud Ar-Reyouchi · Kamal Ghoumid
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 地面光伏电站 机器学习 深度学习 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 物联网 低能耗通信协议 人工智能优化框架 智能医疗 性能提升
语言:

中文摘要

物联网IoT承诺超连接世界,集成数十亿设备。低能耗通信协议对延长资源受限IoT设备电池寿命和确保高效数据交换至关重要。本文提出新型AI驱动优化框架,增强智慧医疗应用中协议的能效、可扩展性和适应性。与以往孤立优化协议的工作不同,本研究全面分析BLE、Zigbee、Thread、LoRa、Sigfox、NB-IoT、Wi-SUN和Weightless等协议,突出优缺点。该框架利用机器学习ML、强化学习RL和深度学习DL等先进AI技术优化传输距离、数据速率和功耗等关键指标。定量评估显示性能和权衡的显著改善,特别是可穿戴设备和远程监测等医疗场景。

English Abstract

The Internet of Things (IoT) promises a hyperconnected world, integrating billions of devices across various domains, including smart healthcare systems. Central to this connectivity are low-energy communication protocols, essential for prolonging the battery life of resource-constrained IoT devices and ensuring efficient data exchange. This paper introduces a novel AI-driven optimization framework to enhance these protocols’ energy efficiency, scalability, and adaptability, specifically for smart healthcare applications. Unlike previous works that focus on protocol optimization in isolation, this study provides a comprehensive analysis of protocols, including Bluetooth Low Energy (BLE), Zigbee, Thread, Long Range (LoRa), Sigfox, Narrowband Internet of Things (NB-IoT), Wireless Smart Utility Network (Wi-SUN), and Weightless, highlighting their strengths and limitations. The framework utilizes advanced AI techniques, such as machine learning (ML), reinforcement learning (RL), and deep learning (DL), to optimize key metrics like range, data rate, and power consumption. Quantitative evaluations show significant improvements in performance and trade-offs, particularly for healthcare scenarios such as wearable devices and remote monitoring. This research bridges the gap between theoretical advancements and practical deployments, aligning optimizations with real-world constraints and healthcare needs and paving the way for scalable IoT solutions.
S

SunView 深度解读

该物联网协议优化技术对阳光电源分布式设备通信系统有应用价值。阳光户用光伏和储能系统中大量传感器和控制器需要低功耗长距离通信。AI优化的LoRa和NB-IoT协议可提升阳光监控设备的通信效率和电池寿命。强化学习自适应协议参数的方法可应用于阳光iSolarCloud平台的设备连接优化。该研究关注的功耗、传输距离和数据速率权衡,对阳光物联网产品定义和技术选型有指导意义,可支撑阳光智慧运维系统的大规模部署。