← 返回
储能系统技术 储能系统 调峰调频 深度学习 强化学习 ★ 5.0

基于序的异构智能体强化学习方法用于配电网与输电网协调的负荷频率控制

Order-based Heterogeneous Agents Reinforcement Learning Method with the Coordination of Distribution Network and Transmission Network for Load Frequency Control

语言:

中文摘要

随着大规模分布式能源(DERs)持续接入配电网(DN),DN已具备参与负荷频率控制(LFC)的能力。本文提出一种基于序的异构智能体软演员-评论家方法(OHASAC),以解决异构可控DERs间的协调问题。通过神经网络估计异构智能体的最优更新顺序,并将最优LFC问题建模为考虑DN与输电网(TN)协调的局部可观测马尔可夫博弈。模型涵盖变辐照条件下电池储能系统(BESS)与光伏(PV)的协同调频。仿真结果表明,该方法在DN-TN协同环境中能有效管理多种分布式电源,兼具优良的泛化性与可扩展性。

English Abstract

With the continuous penetration of large-scale distributed energy resources (DERs) into the distribution network (DN), the DN has acquired the capability to participate in load frequency control (LFC). This paper proposed an orderbased heterogeneous-agent soft actor-critic method (OHASAC) to address the coordination challenges among heterogeneous controllable DERs. A neural network is applied to estimate the optimal update sequence of the heterogeneous agents. The optimal LFC problem is formulated as a partially observable Markov game (MG) considering the coordination of DN with sufficient controllable DERs and transmission network (TN). The modeling process considers the coordinated frequency regulation between battery energy storage systems (BESS) and photo-voltaics (PV) under variable irradiance conditions. Simulations in the coordinated environment of the distribution network (DN) and transmission network (TN) demonstrate that the proposed method can effectively manage various distributed generation resources while achieving superior generalization and scalability.
S

SunView 深度解读

该异构智能体协同控制技术对阳光电源PowerTitan储能系统与SG系列光伏逆变器的协同调频具有重要应用价值。OHASAC方法可优化ST储能变流器在变辐照条件下的BESS-PV协同响应策略,提升配电侧分布式资源参与电网LFC的能力。基于序的智能体更新机制可集成至iSolarCloud平台,实现多站点异构储能与光伏系统的最优调度顺序决策。强化学习框架的泛化性与可扩展性特性,可支持阳光电源构网型GFM控制策略在配网-输电网协调场景下的自适应优化,增强大规模新能源接入下的电网频率稳定性,为智能微网ESS集成方案提供AI驱动的协调控制技术路径。